
© ETSI 2019

OSM Hackfest – Session 7
Performance & Fault Management

Benjamin Diaz (Whitestack)

© ETSI 2019

MON Architecture

2

• https://osm.etsi.org/gitlab/osm-architecture/osm-arch-doc/blob/master/04-mon.md

https://osm.etsi.org/gitlab/osm-architecture/osm-arch-doc/blob/master/04-mon.md

© ETSI 2019

Performance Management
- OSM “MON” Component -

© ETSI 2019

PM – What’s available at OSM?

4

(1) MON collects VIM/VNF metrics defined at VNFD,
from VNFs (through N2VC) and/or from NFVI (through

VIMs)

OPTIONAL tools

MON

VNF Metrics through
VCA

(3) Analytics UI like Grafana can use
existing plugins with well-known
TSDB

TSDB
Prometheus

mon-exporter
websvc port 8000

mon-collector

(2) Prometheus TSDB stores metrics exposed by MON
and exposes them at UI and its REST API via port 9091

© ETSI 2019

Main features

5

• Support for VDU VIM metrics
• Openstack and VMWare (VIO/VCD) plugins available
• Pending support for AWS
• Supported metrics are cpu_utilization, average_memory_utilization, among others.

• Support for VNF-specific metrics

• Collection via proxy charms ‘juju metrics’ layer
• 5 minute interval

• Monitoring happens on a per-VDU basis

https://docs.jujucharms.com/2.3/en/developer-metrics

© ETSI 2019

Model review - Sample VNFD

6

 vdu:
 id: apache_vdu

 ...
 monitoring-param:
 - id: " apache_cpu_util"
 nfvi-metric: " cpu_utilization"
 ...
 monitoring-param:
 - id: "apache_vnf_cpu_util"
 name: "apache_vnf_cpu_util"
 aggregation-type: AVERAGE
 vdu-monitoring-param:
 vdu-ref: "apache_vdu"
 vdu-monitoring-param-ref: " apache_cpu_util"

•VDU Metric Collection from VIM

nfvi-metric corresponds to a OSM metric name which maps to the corresponding metric in each supported VIM

© ETSI 2019

Model review - Sample VNFD

7

 vdu:
- id: haproxy_vdu
 ...
 interface:
 - external-connection-point-ref: haproxy_mgmt
 mgmt-interface: true

 ...
 vdu-configuration:
 initial-config-primitive:
 ...
 juju:
 charm: testmetrics
 metrics:
 - name: load
 ...
 monitoring-param:
 - id: "haproxy_load"
 name: "haproxy_load"
 aggregation-type: AVERAGE
 vdu-metric:
 vdu-ref: "haproxy_vdu"
 vdu-metric-name-ref: "load"

•VDU Metric Collection through VCA

metrics “name” corresponds to a predefined metric name at the proxy charm

© ETSI 2019

Model review - Sample VNFD

8

 vnfd:
 ...
 mgmt-interface:
 cp: haproxy_mgmt
 vnf-configuration:
 initial-config-primitive:
 ...
 juju:
 charm: testmetrics
 metrics:
 - name: users
 ...
 monitoring-param:
 - id: "haproxy_users"
 name: "haproxy_users"
 aggregation-type: AVERAGE
 vnf-metric:
 vnf-metric-name-ref: " users"

•VNF Metric Collection through VCA

metrics “name” corresponds to a predefined metric name at the proxy charm

© ETSI 2019

Proxy Charm metrics layer

9

metrics:
 users:
 type: gauge
 description: "# of users"
 command: who|wc -l
 load:
 type: gauge
 description: "5 minute load average"
 command: cat /proc/loadavg |awk '{print $1}'

•Sample of ‘metrics.yaml’ file (root of charm folder)

© ETSI 2019 10

Metrics collection in action

Walkthrough Example (VIM Metrics)

1. Download and review descriptors from here:
a. webserver_autoscale_vimmetric_nsd
b. webserver_autoscale_vimmetric_vnfd

2. Onboard them!
3. Make sure you have a ‘vnf-mgmt’ network created at your vim and that your OSM is

connected to it (do not confuse it with the public mgmt network)
4. Launch the NS, you will have a LB (HA Proxy) and a Web server (Apache)

a. --config '{vld: [{name: public_vld, vim-network-name: osm-ext}] }'
5. Visit the load balancer IP Address with your browser
6. Visit the Prometheus TSDB GUI at OSM’s IP address, port 9091
7. Validate that MON exporter “target” is properly connected at Status/Targets
8. Back in ‘Graph’, type ‘osm_cpu_utilization’ or ‘osm_average_memory_utilization’ and

see if metrics are already there.

https://osm-download.etsi.org/ftp/osm-6.0-six/7th-hackfest/packages/webserver_vimmetric_autoscale_nsd.tar.gz
https://osm-download.etsi.org/ftp/osm-6.0-six/7th-hackfest/packages/webserver_vimmetric_autoscale_vnfd.tar.gz

© ETSI 2019 11

Metrics collection in action

Walkthrough Example (VIM Metrics)

© ETSI 2019 12

Metrics collection in action

Installing Grafana

• Now let’s add the optional Grafana component to see metrics in a friendlier way
• ./install_osm.sh -o pm_stack

© ETSI 2019 13

Metrics collection in action

Walkthrough Example (VIM Metrics)

• You should be able to visit Grafana at the OSM IP address, port 3000 (admin/admin)
• There’s a default sample dashboard at ‘Manage → Dashboards’ (to the left), that will

show some predefined graphs connected to Prometheus TSDB

© ETSI 2019 14

Metrics collection in action

Walkthrough Example (VDU Metrics from VCA)

• Download and review descriptors from here:
• ubuntuvm_vnfmetric_autoscale_nsd
• ubuntuvm_vnfmetric_autoscale_vnfd

• Onboard them!
• Deploy the NS:

• --config '{vld: [{name: mgmt, vim-network-name: osm-ext}] }'

https://osm-download.etsi.org/ftp/osm-6.0-six/7th-hackfest/packages/ubuntuvm_vnfmetric_autoscale_nsd.tar.gz
https://osm-download.etsi.org/ftp/osm-6.0-six/7th-hackfest/packages/ubuntuvm_vnfmetric_autoscale_vnfd.tar.gz

© ETSI 2019 15

Metrics collection in action

Walkthrough Example (VDU Metrics from VCA)

• You can visit the ‘juju status’ to see if the ‘metrics proxy charm’ is being built:

© ETSI 2019 16

Metrics collection in action

Walkthrough Example (VDU Metrics from VCA)

• After around five minutes, you will see metrics at ‘juju metrics
<name-of-the-application>

© ETSI 2019 17

Metrics collection in action

Walkthrough Example (VDU Metrics from VCA)

• Finally, visit the Prometheus TSDB GUI at OSM’s IP address, port 9091. In ‘Graph’, type
'osm_load’ or ‘osm_users’ and see if metrics are already there.

You can also see the metrics at Grafana.

© ETSI 2019 18

Metrics collection in action

Walkthrough Example (VDU Metrics from VCA)

• Access with SSH to the VNF (ubuntu/osm2018) and execute ‘yes > /dev/null &’. You
should see users and load metrics changing in the next collection interval (5mins).

© ETSI 2019

Fault Management
- Docker logging & ‘POL’ Component -

19

© ETSI 2019

FM – What’s available in Release FIVE?

20

KAFKA BUS

MON
module

POL
module

(2) POL creates alarms through MON (3) MON configures the alarm locally and starts
its evaluation process (by default every 30

seconds)

OPTIONAL tools

NBI

(1) client includes thresholds
(and actions) at descriptor

(4) When a metric threshold is crossed,
MON puts a notification in the bus

OSM N2VC

© ETSI 2019

Main Features

•Logging
• docker containers send their logs to stdout.

• They can be checked on the fly using:

• docker logs osm_mon.1…

• docker logs osm_lcm.1…

• They can also be found at: /var/lib/containers/[container-id]/[container-id].json.log

•VCA logs

• Run ‘juju debug-log’ from the host

21

© ETSI 2019

Main Features

•Alarming
•As of Release FIVE, MON includes a new module called 'mon-evaluator'. The only use case

supported today by this module is the configuration of local alarms and evaluation of
thresholds related to metrics, for the Policy Manager module (POL) to take actions such as
auto-scaling (next chapter)

•Whenever a threshold is crossed and an alarm is triggered, the notification is generated by
MON and put in the Kafka bus so other components can consume them. This event is today
logged by both MON (generates notification) and POL (consumes notification, for its
auto-scaling action)

22

© ETSI 2019 23

FM Experimental Features

•We can enable a “EBK” stack to visualize logs and metrics (Elasticsearch, Beats, Kibana)

• Filebeats collects logs from all docker containers

• Metricbeats collects metrics from the host, containers and applications, through modules.

• Elasticsearch organizes information and provides a way to filter and further process it.

• Kibana provides a way for visualizing information and building dashboards.

© ETSI 2019 24

•You can enable the EBK stack by using:

•After it’s up, visit it with your browser with the OSM IP, port 5601

•Import sample dashboards using this file:
https://osm-download.etsi.org/ftp/osm-4.0-four/4th-hackfest/other/osm_elastic_dashbo
ards.json (Management → Saved objects → Import)

•Go to ‘Discover’ and you will be asked to define one of the ‘beats’ as default ‘index
pattern’, do so by selecting ‘filebeat-*’ and clicking

./install_osm.sh -o elk_stack

FM Experimental Features

https://osm-download.etsi.org/ftp/osm-4.0-four/4th-hackfest/other/osm_kibana_dashboards.json
https://osm-download.etsi.org/ftp/osm-4.0-four/4th-hackfest/other/osm_kibana_dashboards.json

© ETSI 2019 25

•All metrics and logging activity will appear at Kibana.

•Navigate the sample OSM dashboards and provide feedback!

FM Experimental Features

© ETSI 2019

Policy Management
- ‘POL’ Component -

26

© ETSI 2019

PM – What’s available in Release FIVE?

27

KAFKA BUS

MON
module

POL
module

(2) POL creates alarms through MON

NBI
(1) client includes thresholds
and SCALING actions at VNF
descriptor

(5) SCALING actions are triggered based on the received
notification

(3) MON configures the alarm locally and starts its
evaluation process (by default every 30 seconds)

(4) When a metric threshold is crossed,
MON puts a notification in the bus

OSM N2VC

LCM
module

(6) LCM receives the scaling
request and proceeds with

instantiation

© ETSI 2019

Main Features

•Autoscaling
• Scaling descriptors can be included and be tied to automatic reaction to VIM/VNF metric

thresholds.

•An internal alarm manager is supported, so that both VIM and VNF metrics can trigger
threshold-violation alarms and scaling actions.

28

© ETSI 2019

Model review - Sample VNFD

29

 scaling-group-descriptor:
 - name: "apache_vdu_autoscale"
 min-instance-count: 0
 max-instance-count: 10
 scaling-policy:
 - name: "apache_cpu_util_above_threshold"
 scaling-type: "automatic"
 threshold-time: 10
 cooldown-time: 120
 scaling-criteria:
 - name: "apache_cpu_util_above_threshold"
 scale-in-threshold: 20
 scale-in-relational-operation: "LT"
 scale-out-threshold: 80
 scale-out-relational-operation: "GT"
 vnf-monitoring-param-ref: "apache_vnf_cpu_util"

•VNF Scaling Descriptor (automatic, based on metrics)

vnf-monitoring-param-ref corresponds to a predefined ‘monitoring param’

© ETSI 2019

Model review - Sample VNFD

30

•Please note that scaling actions can also be triggered manually as long as there is a
scaling descriptor of type ‘manual’

•The VNFD would look like this:

 scaling-group-descriptor:
 - name: "apache_vdu_manualscale"
 min-instance-count: 0
 max-instance-count: 10
 scaling-policy:
 - name: "apache_cpu_util_manual"
 scaling-type: "manual"
 threshold-time: 10
 cooldown-time: 120

© ETSI 2019

Model review - Sample VNFD

31

•The API call for that is:

•URL: POST to nslcm/v1/ns_instances/{{nsInstanceId}}/scale

•Body

{"scaleType": "SCALE_VNF",

"scaleVnfData":

{"scaleVnfType": "SCALE_OUT",

"scaleByStepData": {

"scaling-group-descriptor": "apache_vdu_manualscale",

"member-vnf-index": "1"

}}}

© ETSI 2019 32

Walkthrough Example

1. Launch a ubuntu machine with a m1-small flavor to use it as a client for stressing
our HAProxy+Apache VNF locally. Instiatiate it at the PUBLIC network.

Make sure you will be able to access it, either by using your ssh-key or the following
configuration script:

#cloud-config
hostname: ubuntu_client
password: osm2018
chpasswd: { expire: False }
ssh_pwauth: True

2. Install Apache-Bench: sudo apt-install apache2-utils

Autoscaling in action

© ETSI 2019 33

Walkthrough Example

2. From this client, run a stress test towards your load balancer’s IP address:

ab -n 5000000 -c 2 http://[HA-Proxy-IP]/test.php

3. Watch the policy manager logs to detect for autoscaling instructions. CPU should
start going up in a minute, validate that at the Grafana Dashboard.

Autoscaling in action

© ETSI 2019 34

Walkthrough Example

4. Instances of Apache Web Server should start appearing (up to 2 or 3 before it
starts load balancing traffic accordingly), validate this at the OpenStack Network
Topology and visiting the HAProxy IP address.

5. Finally, test scale-in by stopping the traffic and waiting for a couple of minutes.

Autoscaling in action

© ETSI 2019

Find us at:
osm.etsi.org

osm.etsi.org/wikipub

