
© ETSI 2020

OSM MR Hackfest – Hack 1
OSM Architecture & Installation

Gianpietro Lavado (Whitestack)
Cyndi Alarcón (Whitestack)
Francisco Rodriguez (Indra)

© ETSI 2020

<image here>

2

OSM Architecture
Review

© ETSI 2020

OSM Architecture overview

3

Kafka bus

TSDB
(Metrics)

Auth

Object
Storage

Common
Services

RO

VCA

OSM IM

OSM IM

Common
Database
(NoSQL)

OSM IM

NBIOSM IM

osmclient

MON

LCM

light-ui

N2VC

POL
Integrated components for placement,
policy, fault and performance
management

End to end orchestrator: LifeCycle
Management (LCM) component

Unified Northbound Interface

 Complete control through CLI and
stand-alone UI

unified message bus for async
communications

common DB, storage,
authentication and TSDB
systems 1

2

4

5

6

7

 VCA controller for Generic NF
configuration & indicator management

3
PLA

© ETSI 2020

Identity & Assignment Operations

4

When dealing with the creation, modification or deletion of users, projects and roles, the
interacting components vary according to the selected backend.

commonDB (mongo)

NBI

CLI UI

keystone

keystoneDB (mysql)

identity & assignment

identity & assignment

(2a) Local DB calls
(default)

(1) API call

(2b) Keystone
methods calls

(3a) Keystone DB call

(3b) External
backends
integration

identity only

© ETSI 2020

Uploading Packages

5

When reading, uploading, modifying and deleting a Network Slice Template, Network Service
Package or VNF Package, the following components interact.

NBI

CLI UI

commonDB (mongo)

(1) API call

(3) DB call to
store descriptors

CLI Example: osm vnfpkg-create myvnfpackage.tar.gz

object storage
(K8 OpenEBS or docker volume)

(2) Store packages

© ETSI 2020

Adding VIM/SDNC Sessions

6

When registering new sessions with VIMs or SDN Controllers, the following components interact.

NBI

CLI UI

commonDB (mongo)

(1) API call

CLI Example: osm vim-create --name myVIM --user myuser --password myprecious --auth_url
http://172.21.7.5:5000/v3 --tenant mytenant --account_type openstack

ro

(3) Register VIM
to RO through LCM

roDB (mysql)

(4) Store VIM data

lcm mon

tsdb (prometheus)

(*) looks for
active VIMs

(*) looks for active metrics

grafana

(*) reads
& presents
vim_status metrics

(2) Store
VIM data

(*) gets active VIM
connection status

VIM (external)

(*) continuous activities

© ETSI 2020

Adding a K8 Cluster

7

When registering new sessions with Kubernetes clusters, the following components interact.

NBI

CLI UI

commonDB (mongo)

(1) API call

CLI Example: osm k8scluster-add --creds myCredentials.yaml --version '1.15' --vim myVIM
--description "My K8s cluster" --k8s-nets '{"net1": "myVIMnet"}' myK8Cluster

vca

(3) Register K8s
cluster

(5) prepare
juju-bundles

lcm

(2) Store K8
cluster data

K8 Cluster
(external) (4) API calls to K8s

(prepare controller & helm)

mon

tsdb (prometheus)

(*) looks for
active K8s
clusters

(*) looks for active metrics

grafana

(*) reads
& presents
k8scluster_status metrics

(*) gets active k8scluster
connection status

UNDER CONSTRUCTION (REL8 - Mid 2020)

(*) continuous activities

© ETSI 2020

VNF Instantiation

8

NBI

CLI UI

commonDB (mongo)

(1) API call

CLI Example: osm ns-create --ns_name myNS --nsd_name myNSD --vim_account myVIM

ro

(3) Launch
call to LCM

VIM (external)

(5) API calls to VIM

lcm mon

(*) looks for
active VMs

(2) Store
NSR data

When launching a new instance of a Network Service or Slice Instance (n x VNFs), the following
components interact.

(4) NFVI
resources
through RO

tsdb (prometheus)

(*) looks for active metrics

grafana

(*) reads
& presents
vm_status metrics

(*) gets active VM status

(*) continuous activities

© ETSI 2020

KNF Instantiation

9

NBI

CLI UI

commonDB (mongo)

(1) API call

CLI Example: osm ns-create --ns_name myNS --nsd_name myNSD --vim_account myVIM

(3) Launch
call to LCM

K8s Cluster
(external)

(4b) Helm-based
deployments

lcm

(2) Store
NSR data

When launching a new instance of a Network Service or Slice Instance (n x VNFs), the following
components interact.

vca

(4a) Juju-based
deployments

mon

tsdb (prometheus)

(*) looks for
active K8s
pods

(*) looks for active metrics

grafana

(*) reads
& presents
k8spods_status metrics

(*) gets active k8pods status

UNDER CONSTRUCTION (REL8 - Mid 2020)

(*) continuous activities

© ETSI 2020

Instantiating with Primitives

10

NBI

CLI UI

(1) API call
of Day-2 primitive

CLI Example of Day-2 primitive: osm ns-action myNS --vnf_name 1 --action_name myAction

(3) Day-2 primitive
call to LCM

lcm

When launching a new instance of a Network Service or Slice Instance (n x VNFs), with Day-1/2
automation, direct interaction with the NF is needed, so the following components interact.

vca

Automatically after
instantiation

(*) Day-1
primitive
call to LCM K8s Cluster

(external)

(4a) Juju-based
primitive

(4b) Helm-based
primitive

VNFs

KNFs

(5) SSH/API
interactions with NFs

commonDB (mongo)

(2) Day-2
action
storage

© ETSI 2020

Instantiating with Placement

11

NBI

CLI UI

commonDB (mongo)

(1) API call

CLI Example: osm ns-create --ns_name myNS --nsd_name myNSD --vim_account myVIM --config
‘{placement-engine: PLA, placement-constraints: {…}}’

(3) Launch
call to LCM

lcm

(2) Store
NSR data

When launching a new instance of a Network Service or Slice Instance (n x VNFs), with placement
support, the following components interact.

(5) Instantiate
NF resources
through RO/VCA
as usual

pla
(4) request NF

placement (tied to
predefined VIM

metrics)

© ETSI 2020

Collecting VNF Metrics (NFVI)

12

tsdb (prometheus)

(1)
continuously
looks for
active VNFs
with metrics

(3) looks for active metrics

grafana

(4) reads
& presents
vim_status metrics

When launching a new instance of a Network Service or Slice Instance (n x VNFs) which is described
with the collection of VNF Metrics that come from infrastructure (NFVI), the following components
interact.

commonDB (mongo)

VIM (external)

(2) API calls to VIM, to collect metrics

mon-collector
exporter

© ETSI 2020

Collecting VNF Metrics (VNF)

13

When launching a new instance of a Network Service or Slice Instance (n x VNFs) which is described
with the collection of VNF Metrics that come from the VNF itself, the following components
interact.

lcm vca

Automatically after
instantiation

(1)
metrics-collection
primitive

(2) Juju-metrics
primitive

tsdb (prometheus)

(3)
continuously
looks for
active VNFs
with juju
metrics

(5) looks for active metrics

grafana

(6) reads
& presents
vim_status metrics

commonDB (mongo)

(4) API calls to VIM, to collect metrics

mon-collector
exporter

VNFs

© ETSI 2020

Alarms & AutoScaling

14

When configuring alarms associated to scaling actions or just webhook notifications (through the
VNFD), the following components interact.

lcm

pol

mon-evaluator tsdb (prometheus)

configured
alarms can
be queried

(2) queries
for metric
values

commonDB (mongo)

(3) when triggered, puts alarm
in bus for pol to take actions

webhook service
(external)

(4a) if action is to
scale: send to bus
for LCM to proceed
and store action to
commonDB

(4b) if action is to
notify, send notification
to webhook service

NBI

(1)
continuously
looks for
configured
alarms at VNF
record

UNDER
CONSTRUCTION
(REL8 - Mid 2020)

© ETSI 2020

Automatic Dashboards

15

When creating Projects or Network Services, Grafana dashboards are created automatically and the
following elements interact.

mon-dashboarder

(2a) if project:
create Project
dashboard

commonDB (mongo)

(1)
continuously
looks for new
projects or NS
with metrics

grafana

(2b) if NS: create
NS dashboard (with
sample graphs)

(*) continuously
delete obsolete
dashboards

© ETSI 2020

Troubleshooting OSM

16

A general approach for OSM Troubleshooting is to first look for error messages in “show” commands, as in:

 osm ns-show [ns]
 osm vim-show [vim]

Besides that, knowing which components interact for each operation, you can troubleshoot by looking at the logs of each
component. All troubleshooting tips are being documented in the user guide, here:
https://osm.etsi.org/docs/user-guide/09-troubleshooting.html

https://osm.etsi.org/docs/user-guide/09-troubleshooting.html

© ETSI 2020

<image here>

17

OSM Installation
methods

`

© ETSI 2020

OSM Installation methods

18

1. OSM can be installed in a single server or VM with the following requirements:

2. Once you have prepared the host with the previous requirements, all you need to do is:

wget https://osm-download.etsi.org/ftp/osm-7.0-seven/install_osm.sh

chmod +x install_osm.sh

CPU RAM DISK NIC Internet SO

MINIMUM 2 4GB 20GB 1 Yes Ubuntu18.04
(64-bit variant required)

RECOMMENDED 2 8GB 80GB 1 Yes Ubuntu18.04
(64-bit variant required)

https://osm-download.etsi.org/ftp/osm-7.0-seven/install_osm.sh

© ETSI 2020

OSM Installation methods

19

OSM R7 can be installed using these main options:

Docker Swarm

For more information go to https://osm.etsi.org/docs/user-guide/01-quickstart.html#installing-osm

./install_osm.sh ./install_osm.sh -c k8s ./install_osm.sh -c charmed

https://osm.etsi.org/docs/user-guide/01-quickstart.html#installing-osm

© ETSI 2020

<image here>

20

Hands-on:
OSM Installation
over Kubernetes

© ETSI 2020

Hands-on: OSM Installation over Kubernetes

21

VM

K8S Single Cluster

osm

monitoring

kube-system

Namespace

Scenario

Pod

Container

Where:

OSM GUI

© ETSI 2020

Hands-on: OSM Installation over Kubernetes

22

1. Take a tenant from http://bit.ly/OSMHF

2. Check the IP of your VM at http://172.21.247.1/project/instances/, then access it through SSH
user: ubuntu
Password: osm4u

3. Now, let’s follow the user-guide at:
https://osm.etsi.org/docs/user-guide/01-quickstart.html#installing-osm

4. Download the installer for OSM R7wget https://osm-download.etsi.org/ftp/osm-7.0-seven/install_osm.sh

4. Make the installer executable

chmod +x install_osm.sh

http://bit.ly/OSMHF
http://172.21.247.1/project/instances/
https://osm.etsi.org/docs/user-guide/01-quickstart.html#installing-osm
https://osm-download.etsi.org/ftp/osm-7.0-seven/install_osm.sh

© ETSI 2020

Hands-on: OSM Installation over Kubernetes

23

5. Run the installer with -c k8s flag

The installation will do the following
 1. Install and configure LXD
 2. Install juju
 3. Install docker CE
 4. Disable swap space
 5. Install and initialize Kubernetes
 as pre-requirements.
 Do you want to proceed (Y/n)? Y

6. You will be asked to confirm the installation of the following components:

./install_osm.sh -c k8s

© ETSI 2020

Hands-on: OSM Installation over Kubernetes

24

kubectl get nodes
kubectl get namespaces
kubectl get pods --all-namespaces
kubectl get all -n kube-system
kubectl get all -n osm

 kubectl describe pod light-ui-xyz -n osm

7. When installation is finished, execute the following commands to check k8s installation:

8. Test the OSM client:

osm --help

osm user-list

© ETSI 2020

Hands-on: OSM Installation over Kubernetes

9. Go to OSM GUI at http://<VM-IP> and access with admin/admin

25

http://172.21.247.1/project/instances/

© ETSI 2020 26

Hands-on:
OSM System
Monitoring

© ETSI 2020

Do not do this yet

Monitoring OSM 27

The usual way to go

./install_osm.sh -c k8s --k8s_monitor
Access dashboard: http://<osm-host>:3000

Kubernetes health

OSM component
status

OSM component
resource consumption

© ETSI 2020

Getting the latest release candidate

• Note1 : We are assuming you did not include the switch “–k8s_monitor” in the previous
installation. Otherwise please do now installers/uninstall-k8s-monitoring.sh after step 2

• Note 2: We are assuming you used the switch “-c k8s”

STEPS

1. git clone "https://osm.etsi.org/gerrit/osm/devops"

2. cd ~/devops/

3. git pull "https://osm.etsi.org/gerrit/osm/devops"
refs/changes/72/8372/10

4. cd ~/devops/installers/

5. ./full_install_osm.sh -o k8s_monitor -D $HOME/devops

Monitoring OSM 28

https://osm.etsi.org/gerrit/osm/devops
https://osm.etsi.org/gerrit/osm/devops

© ETSI 2020

What is installed

Monitoring OSM 29

Host

Prometheus
Operator &
exporters

Kubernetes core “monitoring”
 namespace

OSM pods

“osm” namespace

Resources monitored Monitoring components

Dashboards

© ETSI 2020

Monitoring OSM

•Available in the k8s deployment of OSM.

•There is a similar feature for the docker swarm (classic)
deployment of OSM (not to be discussed here)

•Aimed at monitoring OSM infrastructure, NOT the VNF/NS
deployed

•Implementation based on Prometheus operator (Helm chart), plus
some Prometheus exporters (node, Kafka, mysql, mongodb), in
“monitoring” namespace

Monitoring OSM 30

© ETSI 2020

More implementation details

31

Prometheus pod

Dashborads
ConfigMaps

Prometheus
operator

Prometheus CR
ServiceMonitor

CRD
ServiceMonitor

CRDServiceMonitor
CR

OSM pods
Mysql

adapter

Mongodb
adapter

Kafka
adapter

Node
adapter

Kubernetes pods

…

…

Host OS

Resources monitored Adapters to Prometheus Monitoring pods Configuration

“monitoring” namespace

Change here to customize
the dashboards

scrapping

© ETSI 2020

http://ip-address>:3001 (admin:prom-operator)

•Kubernetes cluster
upstream dashboards
in Prometheus
operator helm chart

•Open Source MANO
Specific dashboards
for OSM
• OSM Status summary

• Hosts

• Kafka, mongodb, mysql

Monitoring OSM 32

© ETSI 2020

OSM Status summary

Monitoring OSM 33

Failed pods / Failed
nodes (if any)

K8s resources requested

OSM components status
(up/down)

CPU/Memory per OSM
component

© ETSI 2020

Hosts status

Monitoring OSM 34

Summary (uptime, used
memory, CPU, disk)

CPU usage

Disk usage

Memory usage

Network usage

© ETSI 2020

Mongo, mysql and Kafka dashboards

Monitoring OSM 35

Kafka
Messages produced/consumed
Lag by consumer group
Partitions per topic

Mongodb
Connections
Document operation stats
Network operations

Mysql
Connections
Disk occupation (indexes, tables)
Network operations

© ETSI 2020

Inspecting the “monitoring” namespace

•See all the objects deployed in the monitoring namespace
•kubectl --namespace monitoring get all

•In particular, the dashboards are stored as configmaps
•kubectl --namespace monitoring get configmap

•Servicemonitors specify what is to be scrapped by Prometheus
•kubectl --namepsace monitoring get servicemonitor

Monitoring OSM
36

© ETSI 2020

Let’s play a little

37

Force no pods running nbi
kubectl scale --namespace osm --replicas=0
deployment/nbi

© ETSI 2020

We are going to improve the dashboard

38

Go to Edit ->Visualization

Coloring: Activate “value”

Gauge: Deactivate “show”

Value Mappings: Set value mappings

null -> error

0 -> error

1 -> ok

© ETSI 2020

And make the change persistent

•Get the summary dashboard configmap definition to your computer
scp
ubuntu@<ip-addr>:/home/ubuntu/devops/installers/k8s/sum
mary-dashboard.yaml .

•In grafana, “export” 🡪 “json”, and copy in the data contents of the
.yaml file defining the configmap

•Upload the modified file
• scp summary-dashboard.yaml
ubuntu@<ip-addr>:/home/ubuntu/devops/installers/k8s

•Update the dashboard
• kubectl –n monitoring apply –f summary-dashboard.yaml

39

© ETSI 2020

<image here>

40

OSM Packages
overview

© ETSI 2020

VNF Package

What is a package in NFV?

41

Packages contain the information that orchestrators need to launch a network service.
The are basically two types of packages.

VDU
Virtualisation Deployment Unit

VDU
Virtualisation Deployment Unit

VM Image

● Metadata
● VNFD (VNF Descriptor)

○ Connection points
○ Lifecycle Events
○ Virtual Links

● Scripts

The VNF Package
● It contains the characteristics of the VNF, for example:

○ The software image(s) it needs.
○ Compute resources.
○ Network connections between its components

(Internal Virtual Links)
○ Performance requirements.
○ Automation scripts.

● Its main element is the VNF Descriptor (VNFD)
● It is built and provided by the VNF vendor.
● This applies in a similar way to new conceptual kinds

of Network Functions (NFs), like a Physical NF (PNF), a
Containerized NF (CNF), a Kubernetes-based NF (KNF),
and Hybrid Network Package (HNF), etc.

© ETSI 2020

NS (Network Service)

VNF Package

● Metadata
● VNFD (VNF Descriptor)

○ Connection
points

○ Lifecycle Events
○ Virtual Links

● Scripts

What is a package in NFV?

42

Packages contain the information that orchestrators need to launch a network service.
The are basically two types of packages.

The Network Service Package

● It contains the characteristics of the
Network Service, for example:
○ The VNF(s) it needs.
○ Network connections

between VNFs (external
Virtual Links)

● Its main element is the NS
Descriptor (NSD)

● It is built by the operator from
VNFs that conform the Network
Service that needs to be provided.

VDU
Virtualisation Deployment
Unit

VDU
Virtualisation Deployment Unit

VM Image

VNF Package

VDU

VNF Package

VDU

● NSD - Network Service Descriptor
○ VNF Descriptors
○ Virtual Link Descriptors
○ Dependencies

© ETSI 2020

Packages in OSM

43

Package descriptors in OSM are modeled in an increasing alignment to ETSI NFV standards (SOL006)
Everything that can be put in a descriptor to model a VNF or NS, is present at OSM’s Information
Model, maybe the richest model of the NFV MANO industry.

Visit this link to navigate the model: https://osm.etsi.org/docs/user-guide/11-osm-im.html

https://osm.etsi.org/docs/user-guide/11-osm-im.html

© ETSI 2020

Packages in OSM

44

The NS Package is the one actually being launched in OSM.
It requires constituent VNF Packages to be present in the system.

Network Service “hackfest_basic-ns”

It needs VNF “hackfest_basic-vnf” to be present

It will put the VNF in a new network called ‘mgmtnet’

© ETSI 2020

Packages in OSM

45

The VNF Package is the one describing a given Network Function.
It requires VIM/NFVIs to support whatever characteristic is being required through its descriptor.

VNF “hackfest_basic-vnf”

It has one VDU (VM) that requires an image
called ‘ubuntu1604’, and a flavor with 1 vCPU,
1GB RAM and 10GB of storage.

It has one interface, exposed to the Network Service
as external Connection Point “vnf-cp0”

© ETSI 2020

Packages in OSM

46

Once NS Packages and their constituent VNF Packages are present in the system, and at least a VIM
is registered, a Network Service can be launched.

© ETSI 2020

<image here>

47

Hands-on:
Integrating a VIM &
Instantiating a basic
Network Service

© ETSI 2020

Hands-on: Integrating a VIM

48

1. Create a VIM in OSM vía CLI

osm vim-create --name openstack-site-hackfest-x --user osm_hackfest_x --password
<Pass> --auth_url http://<VIM-IP>:5000/v3 --tenant osm_hackfest_x --account_type
openstack --config='{security_groups: default}'

2. Validate the VIM creation . The status should be ENABLED

osm vim-list

osm vim-show openstack-site-hackfest-x

© ETSI 2020

Hands-on: Integrating a VIM

49

1. Create a VIM in OSM vía GUI
2. Go to VIM accounts -> add new VIM

○ Name: openstack-site-hackfest-x
○ Type: Openstack
○ VIM URL: http://<VIM-IP>:5000/v3
○ VIM Username: osm_hackfest_x
○ VIM Password: ******
○ Tenant name: osm_hackfest_x

3. Click in Create button
4. Validate the VIM creation .

The status should be ENABLED

© ETSI 2020

Hands-on: Launching your first NS

50

vnfd:vnfd-catalog:
 vnfd:
 - connection-point:
 - name: vnf-cp0
 type: VPORT
 description: A basic VNF descriptor w/ one VDU
 id: hackfest_basic-vnf
 logo: osm.png
 mgmt-interface:
 cp: vnf-cp0
 name: hackfest_basic-vnf
 short-name: hackfest_basic-vnf
 vdu:
 - alternative-images:
 - image: ubuntu/images/hvm-ssd/ubuntu-artful-17.10-amd64-server-20180509
 vim-type: aws
 count: '1'
 id: hackfest_basic-VM
 image: ubuntu1604
 interface:
 - external-connection-point-ref: vnf-cp0
 name: vdu-eth0
 type: EXTERNAL
 virtual-interface:
 type: PARAVIRT
 name: hackfest_basic-VM
 vm-flavor:
 memory-mb: '1024'
 storage-gb: '10'
 vcpu-count: '1'
 version: '1.0'

 VNF name: hackfest_basic-vnf

VDU
● Name: hackfest_basic-VM
● Image: ubuntu1604
● Flavor:

○ 1 CPU
○ 1GB RAM
○ 10 GB Disk

VNFD Descriptor and Diagram

vdu-eth0

vnf-cp0

© ETSI 2020

Hands-on: Launching your first NS

51

nsd:nsd-catalog:
 nsd:
 - constituent-vnfd:
 - member-vnf-index: '1'
 vnfd-id-ref: hackfest_basic-vnf
 description: Simple NS with a single VNF and a single VL
 id: hackfest_basic-ns
 logo: osm.png
 name: hackfest_basic-ns
 short-name: hackfest_basic-ns
 version: '1.0'
 vld:
 - id: mgmtnet
 mgmt-network: 'true'
 name: mgmtnet
 short-name: mgmtnet
 type: ELAN
 vnfd-connection-point-ref:
 - member-vnf-index-ref: '1'
 vnfd-connection-point-ref: vnf-cp0
 vnfd-id-ref: hackfest_basic-vnf

VDU
● Name: hackfest_basic-VM
● Image: ubuntu1604
● Flavor:

○ 1 CPU
○ 1GB RAM
○ 10 GB Disk

NSD Descriptor and Diagram

vdu-eth0

vnf-cp0
hackfest_basic-vnf

hackfest_basic-ns

mgmtnet

© ETSI 2020

Hands-on: Launching your first NS

52

1. Download the nsd and vnfd packages

wget http://osm-download.etsi.org/ftp/osm-5.0-five/6th-hackfest/packages/hackfest_basic_vnf.tar.gz

wget http://osm-download.etsi.org/ftp/osm-5.0-five/6th-hackfest/packages/hackfest_basic_ns.tar.gz

2. Create the NSD and VNFD in OSM

osm vnfd-create hackfest_basic_vnf.tar.gz
osm nsd-create hackfest_basic_ns.tar.gz

3. Create an SSH key

ssh-keygen

4. Create the Network Service in OSM

osm ns-create --ns_name hackfest1 --nsd_name hackfest_basic-ns --vim_account openstack-site-hackfest-x
--ssh_keys .ssh/id_rsa.pub --config '{vld: [{name: mgmtnet, vim-network-name: osm-ext}] }'

© ETSI 2020

Hands-on: Launching your first NS

53

6. Validate NS creation in OSM vía GUI
○ Go to Instances -> NS Instances

osm ns-list
osm ns-show hackfest1

7. Access to the VM created in Openstack VIM

ssh -i .ssh/id_rsa ubuntu@<MGMT_IP>

8. Delete NS , NSD and VNFD

osm ns-delete hackfest1
osm vnfd-delete hackfest_basic_vnf
osm nsd-delete hackfest_basic_ns

5. Validate NS creation in OSM vía CLI

© ETSI 2020

Bonus Hands-on: Creating VNF & NS Descriptors

54

osm package-create vnf hackfest-basic

3. Build the packages

 osm package-build hackfest-basic_vnf
 osm package-build hackfest-basic_ns

4. Upload NFD and NDS to OSM

 osm vnfd-create hackfest-basic_vnf.tar.gz
 osm nsd-create hackfest-basic_ns.tar.gz

1. Create the VNF Descriptor

2. Create the NS Descriptor

osm package-create ns hackfest-basic

© ETSI 2020

Bonus Hands-on: Creating VNF & NS Descriptors

55

osm ns-create --ns_name hf-basic --nsd_name hackfest-basic_nsd --vim_account openstack-site-hackfest-x
--ssh_keys ~/.ssh/id_rsa.pub --config '{vld: [{name: mgmt, vim-network-name: osm-ext}] }'

5. Create the Network Service

6. Validate NS creation in OSM vía GUI
○ Go to Instances -> NS Instances

7. Compare the VNFD of this example with the previous Hands-On, find the difference and fix it

© ETSI 2020

Find us at:
osm.etsi.org

osm.etsi.org/wikipub

