

OSM#9 Hackfest Underlay Automation with SDN Assist

Gianpietro Lavado (Whitestack)

Using Virtual Interfaces (VIRTIO)

Using Physical Interfaces (SR-IOV/PASSTHROUGH) MA

SR-IOV and
Passthrough features
expose the instance
directly to the physical
NIC, so who takes care
of the end-to-end
connectivity?

SDN Assist

- 1. OSM orquestrates SR-IOV or Passthrough
 - \rightarrow Proper assignment of I/O physical interfaces to the VM (PFs or VFs = Physical or Virtual Functions)
- 1. OSM SDN Assist gives the ability to create L2 connections between VFs
 - Interconnecting VMs
 - Attaching external traffic sources

SDN Assist

^{*} Supported as of REL7.0.1 \rightarrow ONOS, Arista, Contrail, Open Daylight and Floodlight

SDN Assist requirements

- The VIM must have been created with a reference to the physnet(s) to use for SR-IOV (typically something like: --config '{dataplane_physical_net: <name>, microversion: 2.32}')
- An compatible SDN Controller of Config Manager must be installed and it must be reachable from OSM.
- For certain plugins (at least the OpenFlow based), an "SDN Port Mapping" file must be prepared to include all the possible PCI ports that can be selected by the VIM, per port.
- The VIM user must have admin privileges or rights to get the PCI information.
- Finally, the VIM and SDNC must be configured properly in OSM.
- More information here:
 https://osm.etsi.org/docs/user-guide/04-vim-setup.html#using-sdn-assist

© ETSI 2020 6

Back to our scenario!

In our example, we can configure the S1 data interface, currently using VIRTIO drivers (OVS/VxLAN) to use SR-IOV instead. We can also set the descriptor to request CPU Pinning, memory Huge Pages, and stick the VDUs to a single NUMA node.

Today in OSM, all these optimizations are applied automatically when selecting SR-IOV in one of the interfaces, in order to match the packet processing capabilities that the direct connection to the NIC will allow for.

Preparing the environment

1. Create the SDN Controller, replacing XX with your tenant number-

```
osm sdnc-create --name onosXX --type onos vpls --url http://172.21.248.57:8181 --user karaf --password karaf
```

2. Download the recommended SDN Port Mapping file

```
wget http://osm-download.etsi.org/ftp/osm-7.0-seven/OSM9-hackfest/files/magma sdn port mapping.yaml
```

3. Update your VIM to know about the SDNC and the mapping file

osm vim-update etsi-openstack-XX --sdn controller onosXX --sdn port mapping magma sdn port mapping.yaml

Modifying the S1s to use "SR-IOV"

hackfest_magma-agw-enb_vnfd

eth0 interface of MagmaAGW VDU (Line 96)

```
76
            vdu:
77
            - alarm:
78
                - actions:
79
                        alarm:
80
                            url: https://webhook.site/5706da10-04a0-4ab0-819b-cb524f71a367
81
                    alarm-id: cpu-above-threshold
82
                    operation: GT
83
                    value: 80
                    vnf-monitoring-param-ref: agw_cpu_util
84
85
                cloud-init-file: magmaagw init
86
                count: 1
87
                description: magma-agw-vdu
88
                id: magma-agw-vdu
                                                                                   128
                                                                                                    cloud-init-file: srslte init
89
                image: magma101 hf9
                                                                                   129
                                                                                                     count: 1
90
                interface:
                                                                                   130
                                                                                                     description: srsLTE-vdu
91
                - internal-connection-point-ref: agw-s1
                                                                                   131
                                                                                                     id: srsLTE-vdu
92
                    name: eth0
                                                                                   132
                                                                                                     image: srsLTEzmqRF hf9
93
                    position: 1
                                                                                   133
                                                                                                     interface:
94
                    type: INTERNAL
                                                                                   134
                                                                                                     - external-connection-point-ref: srsLTE-mgmt
95
                    virtual-interface:
                                                                                   135
                                                                                                         mgmt-interface: true
96
                        type: SR-IOV
                                                                                   136
                                                                                                         name: eth0
                                                                                   137
                                                                                                         type: EXTERNAL
                                                                                   138
                                                                                                         virtual-interface:
```

eth1 interface of srsLTE VDU (Line 144)

Launch your NSI!

- 1. Use the scripts already in place
 - ./launch_nsi.sh
- 2. Check the connectivity between VDUs and explore the network assigned in OpenStack
- 3. Optionally, visit the ONOS Controller UI at http://172.21.248.57:8181/onos/ui/login.html to check topology and flows (which you will see only if assigned different ports)

Find us at:

osm.etsi.org osm.etsi.org/wikipub

