

Demonstrating 5G Core network automation by OSM

ULAK Communications

Gülsüm Atıcı & Naciye Akyıldız

ÇINAR 5G Core

CD PIPELINE

 Cross-functional development teams from ULAK and partners are co-developing 5G Core network (Çınar) according to 3GPP standards, utilizing agile development methodology (Scrum) and using smart, continuous integration and continuous delivery pipeline.

• Source Management Repository & Release management: Bitbucket

• Static code check: CppCheck

Test Automation Tools: NodeJs, Npm, Mocha

• Build Automation Tool: GNU Make

Continuous Integration Tool : Jenkins

Code Coverage Tool: Gcovr

(4>

ÇINAR 5G Core

We are extending it to participate OSM events as VIM/NFVi /MEC provider

ÇINAR 5G Core

- Utilizes 4 separate networks
- Management network for connection to database and other tools
- Control network is used for communication between NF's
- Public network is used for external access
- Data network is used for data transportation
- PaaS environment inludes databases (MongoDB & Postgresql)
- Monitoring (Zabbix), log collection and analytics tools (EFK)

ÇINAR 5GC NSD Design


```
constituent-vnfd:
    member-vnf-index: 1
    vnfd-id-ref: mslice1 nrf vnfd
    member-vnf-index: 2
    vnfd-id-ref: mslice1_pcf_vnfd
   member-vnf-index: 3
    vnfd-id-ref: mslice1 smf vnfd
   member-vnf-index: 4
    vnfd-id-ref: mslice1 ausf vnfd
    member-vnf-index: 5
    vnfd-id-ref: mslice1 udr vnfd
   member-vnf-index: 6
    vnfd-id-ref: mslice1 udm vnfd
   member-vnf-index: 7
    vnfd-id-ref: mslice1 amf vnfd
   member-vnf-index: 8
    vnfd-id-ref: mslice1 upf vnfd
connection-point:
    name: cinar-mgmt
    vld-id-ref: s1
   name: cnr-data
    vld-id-ref: cnr-data
    floating-ip-required: true
    name: cnr-control
    vld-id-ref: s2
   name: cnr-public
    floating-ip-required: true
    vld-id-ref: cnr-public
   name: cinar-public
    floating-ip-required: true
    vld-id-ref: cinar-public
```

```
ip-profiles:
   name: sl
    description: s1 network
    ip-profile-params:
        ip-version: ipv4
        subnet-address: 13.10.21.0/24
        dhcp-params:
          enabled: true
    description: s2 network
    ip-profile-params:
        ip-version: ipv4
        subnet-address: 14.10.21.0/24
        dhcp-params:
         enabled: true
vld:
   id: 52
   name: s2
    short-name: s2
    type: ELAN
                 mgmt-network: 'true'
    ip-profile-ref: s2
    vim-network-name: cinar-mgmt
    vnfd-connection-point-ref:
       member-vnf-index-ref: 1
        vnfd-id-ref: mslicel_nrf_vnfd
        vnfd-connection-point-ref: cnr-control
        ip-address: 14.10.21.45
       member-vnf-index-ref: 2
        vnfd-id-ref: mslice1 pcf vnfd
        vnfd-connection-point-ref: cnr-control
        ip-address: 14.10.21.48
       member-vnf-index-ref: 3
        vnfd-id-ref: mslice1_smf_vnfd
        vnfd-connection-point-ref: cnr-control
        ip-address: 14.10.21.49
```


ÇINAR 5GC VNFD Design


```
monitoring-param:
   id: "ubuntu users"
    name: "ubuntu users"
    aggregation-type: AVERAGE
    vnf-metric:
     vnf-metric-name-ref: "users"
   id: "ubuntu load"
    name: "ubuntu load"
    aggregation-type: AVERAGE
    vnf-metric:
     vnf-metric-name-ref: "load"
   id: "ubuntu load pct"
    name: "ubuntu_load pct"
    aggregation-type: AVERAGE
    vnf-metric:
      vnf-metric-name-ref: "load pct"
   id: "cpu usage"
    name: "cpu_usage"
    aggregation-type: COUNT
    vnf-metric:
      vnf-metric-name-ref: "cpu"
   id: "memory_usage"
    name: "memory usage"
    aggregation-type: COUNT
    vnf-metric:
      vnf-metric-name-ref: "memory"
```


Collaborations

MANO

Whitestack-WhiteNFV TATA Elxsi- TEOSM

NFVI-VIM

Windriver
Whitestack-Whitecloud
Havelsan-Telco Cloud

VNF Vendors Ulak Spirent

5G Use Case Demo: OSM Orchestrated 5G-related NS NRF testing scenario:

Ulak's NRF functionality has been verified by the Landslide capabilities of AMF emulation for NF registration and SMF discovery to ULAK's NRF

5GC E2E testing scenario:

Registration and PDU session establishment to ULAK's 5GC has been successfully completed by Landslide's 5G RAN emulation capability for Ulak VNF's

Demo Setup

- Ulak NS includes 9 VNFs
- Sprient Landslide is composed of 2NS's: vTAS and vTS
- ULAK's NRF and Landslide vTS were deployed on Windriver via Whitestack
- ULAK's 5GC was deployed on Windriver VIM via Tata Elxsi
- Landslide vTAS NS was deployed on Havelsan VIM

© ETSI

OSM Usage

- VNF configuration and recovery with day-2 actions
- 5G Core network orchestration
- Manuel scaling
- Performance monitoring and alarm creating by Zabbix integration
- Log collection and error reporting by integration with Elasticsearch Fluentd Kibana (EFK)

Plans and Comments

Plan

- Use OSM to create network slices within separate and shared NS's
- Autoscale the VNF's

Difficulties Experienced

- Configuration of scaled VNFs for a dynamic scenario
- Getting notifications from OSM in status changes

THANKS

