Enabling high performance VNFs with EPA & SDN Assist

Mark Beierl (Canonical)
EPA (Enhanced Platform Awareness)

- Covers a set of techniques for getting more performance
- EPA features include:
 - NUMA node placement
 - CPU Pinning
 - Huge Pages
 - SR-IOV
- OSM supports these since release 0
 - Enabled via the NF descriptor
Non-Uniform Memory Access

- Memory is attached to each CPU’s integrated memory controller
- Memory attached to a memory controller of another CPU is considered remote
- Remote memory access must use the Interconnect to read remote memory

Preventing a process from moving to a different CPU is called CPU Pinning
Most NFVI/VIMs support **CPU Pinning** and **NUMA Topology Awareness** capabilities without any need for configuration.

CPU Pinning: being able to pin a VM to specific CPUs

NUMA Topology Awareness: making the VM aware of the physical CPU topology
Huge Pages

- Linux kernel maps memory in pages (4k)
- 64 GB RAM = 16,777,216 4k pages
 - Mapping of pages to physical RAM addresses happens in the Translation Lookaside Buffer (TLB)
- TLB is subset of all virtual pages
- Finding memory that is not in TLB is slow
- Recommendation: Huge Pages
 - Changes page size from 4k to something larger
 - Can result in memory waste
Memory Huge Pages allows the VNFs to request RAM memory from a special pool where page sizes are bigger, enabling better performance.

Enabling/changing Huge Pages require a node reload, and the NFVI servers to allocate a new memory pool with bigger pages, this will not allow VMs set with normal pages to use this new pool, so it should be limited.
SR-IOV

- Hypervisor must maintain map of which VM sent which packet so response goes to correct VM
- Single Root I/O Virtualization
 - Allows device to appear to be multiple separate physical PCIe devices
 - Physical Function (PF) - the primary function of the device
 - Virtual Function (VF) - associated with PF, shares physical resources of device
 - Bypasses map so lookup is not necessary
SR-IOV allows VNFs to have direct access to a virtualized PCI of a NIC, thus giving it better throughput.

Enabling SR-IOV requires a node reload for reconfiguration of the IOMMU virtualization mode. It also requires physical interfaces to be dedicated to this feature.
OSM and EPA

- OSM supports EPA enablement in Descriptors
- However
 - OSM does not change OpenStack server configuration
 - SR-IOV must already be enabled in the compute node
 - Huge pages must be enabled in the compute node
 - Descriptor must be made aware of NUMA topology
 - OSM does not know:
 - Number of Numa Nodes
 - Number of CPU cores
 - Number of CPUs/threads per core
- All this must be known before launching a service
SDN Assist

● **SDN Controller**
 ○ Separates the network control functions from forwarding functions
 ○ Creates overlays that exist on top of physical network
 ○ Manages flow control of switches “under” the overlay

● **OSM currently supports:**
 ○ Arista Cloudvision
 ○ Floodlight OpenFlow
 ○ Juniper Contrail
 ○ OpenDaylight (ODL) OpenFlow
 ○ ONOS (OpenFlow or VPLS)
Using Virtual Interfaces (VIRTIO)

VXLAN Tunnels (controlled by the VIM)

vSwitches like OVS have limited performance (~1Gbps), unless OVS-DPDK or similar techniques are used (~10Gbps)

Physical interfaces used for transporting “tunnels” only require IP connectivity
SR-IOV and Passthrough features expose the instance directly to the physical NIC, so who takes care of the end-to-end connectivity?
1. OSM orchestrates SR-IOV or Passthrough
 → Proper assignment of I/O physical interfaces to the VM (PFs or VFs = Physical or Virtual Functions)

1. OSM SDN Assist gives the ability to create L2 connections between VFs
 - Interconnecting VMs
 - Attaching external traffic sources
OSM’s SDN Assist feature takes care of the “underlay” connectivity whenever it sees VLDs with SR-IOV or PASSTHROUGH ports that need to connect between each other.

VXLAN, OpenFlow, VLAN, etc. (depends on the SDN Controller or Manager)

* Supported as of REL7.1.0 → ONOS, Arista, Open Daylight and Floodlight
Like EPA, OSM does not manage SDN Controller or OpenStack
 ○ Compatible SDNC must be installed
 ○ Must be reachable from OSM

Some plugins need additional information
 ○ Port mapping files for PCI ports

VIM account must have admin privileges
 ○ Needs get PCI information
In our example, we can configure the S1 data interface, currently using VIRTIO drivers (OVS/VxLAN) to use SR-IOV instead. We can also set the descriptor to request CPU Pinning, memory Huge Pages, and stick the VDUs to a single NUMA node.

Today in OSM, all these optimizations are applied automatically when selecting SR-IOV in one of the interfaces, in order to match the packet processing capabilities that the direct connection to the NIC will allow for.