

OSM#10 Hackfest
Closed-Loop Operations
Adding Auto-Scaling & Alerting to VNFs

Subhankar Pal, Altran

Current Auto Scaling & Alarms Feature

OSM Service Assurance

Revisiting Service Assurance MDG

Main components

MON

- Covers the basic uses cases, with a solid architecture to expand them easily.
- Opportunities to enhance usability.

POL

- Designed around the autoscaling use case.
- Starting to cover VNF alarms.

PLA

- Provides
 computation of
 optimal placement
 of NFs over VIMs
 - Considers cost of compute/network

Prometheus

- OSM's TSDB for
 metrics since
 REL5
- Opportunities to enhance multitenancy to match new RBAC capabilities.

Grafana

- Integrates seamlessly with Prometheus.
- Great tool for enhancing usability of the system's Service
 Assurance

Auxiliary/ Optional

ELK

- Proved seamless integration with OSM.
- Main use case remains at log processing where stack is used.

Auto Scaling & Alarms Features

Auto Scaling

- Auto scaling allows to automatically scale VNFs with a VDU granularity and based on any available metric.
- Scaling descriptors can be included and be tied to automatic reaction to VIM/VNF metric thresholds.
- Supported metrics are both VIM and VNF metrics.

Alarms

 An internal alarm manager has been added to MON through the 'monevaluator' module, so that both VIM and VNF metrics can also trigger threshold-violation alarms and scaling actions

Revisiting MON Architecture

Formal documentation: https://osm.etsi.org/gitlab/osm-architecture/osm-arch-doc/blob/master/04-mon.md

POL Architecture

Formal documentation: https://osm.etsi.org/gitlab/osm-architecture/osm-arch-doc/blob/master/05-pol.md

Auto Scaling & Alarms Architecture

When configuring alarms associated to scaling actions or just webhook notifications (through the VNFD), the following components interact.

Scaling Group Descriptor


```
scaling-group-descriptor:
     - max-instance-count: 1
       min-instance-count: 0
       name: vdu_autoscale
       scaling-policy:
     - cooldown-time: 120
       name: cpu_util_above_threshold
       scaling-criteria:
       - name: cpu_util_above_threshold
         scale-in-relational-operation: LT
         scale-in-threshold: 10
         scale-out-relational-operation: GT
         scale-out-threshold: 60
         vnf-monitoring-param-ref: agw_cpu_util
       scaling-type: automatic
       threshold-time: 10
       vdu:
       - count: 1
         vdu-id-ref: magma-agw-vdu
```

The scaling descriptor is part of a VNFD. Like the example shows, it mainly specifies:

- An existing metric to be monitored, which should be pre-defined in the monitoring-param list (vnf-monitoring-param-ref).
- The thresholds to monitor (scale-in/out-threshold)
- The minimum and maximum amount of scaled instances to produce.
- The minimum time it should pass between scaling operations (cooldown-time)
- The VDU to be scaled (vdu-id-ref) and the amount of instances to scale per event (count)

Alarm Descriptor

Alarms based on metric thresholds can be sent to webhooks The alarm descriptor is also part of a VNFD. Like the example shows, it mainly specifies:

- An existing metric to be monitored, which should be pre-defined in the monitoring-param list (vnf-monitoring-param-ref).
- The thresholds to monitor (alarm-threshold)
- The webhook to be invoked url)

Hands-on!

Auto Scaling & Alerting

Let's play with metrics and (auto)dashboards!

- We will use slice created previously and stress the VDU of AGW VNF
- Check the AGW VM IP in the VIM http://172.21.247.1/

Let's play with metrics and (auto)dashboards!

Login to AGW VM from your OSM command line

```
$ ssh magma@172.21.248.106
```

Increase CPU load with this command. Not down the process id.

```
$ yes > /dev/null &
```

- Check CPU metrics in Grafana http://172.21.248.xx:3000/
- Observe increase in CPU load and eventually a new VDU is created through auto scaling.

Let's play with metrics and (auto)dashboards!

- Check webhook invoked at https://webhook.site/ when alarm is generated.
- Now locate the IP of the process and kill it to reduce the extra CPU load

\$ kill 3904

Observe descrease in CPU load and eventually a additional VDU is deleted.

New Proposals

OSM Service Assurance

Future Vision – Proactive Closed Loop

Closed-loop automation powers autonomous networks.

1. Observe

Collect network metrics through different telemetry interfaces.

3. Act

Acts upon orchestrated object and implements given lifecycle action.

2. Decide

Processes collected metrics to determines the network status, decides action to be taken based on network policies. This phase is not responsible for executing the action.

Auto-Scaling & Alarms – New Architecture

Auto-Scaling & Alarms – New Architecture

- Setting threshold on correlated metrics (multiple metrics)
- Move away from threshold to dynamic ML based anomaly detection

Thank You!!

Find us at:
osm.etsi.org/wikipub

