
© ETSI© ETSI

OSM usage
Onboarding

(descriptors, packages and process)

12/06/2023

Gulsum Atici
(Canonical)

© ETSI© ETSI

Agenda

◉ OSM Concepts

◉ NF Onboarding Process

◉ What is NF onboarding ?

◉ Onboarding Requirements

◉ Onboarding Stages

2

© ETSI

OSM

Concepts

◉ Information Model & Packages

◉ VNFd, NSd

◉ VNF/KNF/PNF/Network Service

3

© ETSI

OSM Concepts: Specs and Information Model

4

OSM NF and NS package
formats are based on
SOL004 and SOL007

OSM data model and

descriptors are derived

from SOL006

OSM IM reference link:
https://osm.etsi.org/docs/user-guide/l
atest/11-osm-im.html

© ETSI

OSM Concepts: IM & Packages

5

VNFD

NSD

VNF

NS

VNF
Package

NS
Package

Information Model Packages

© ETSI

OSM Concepts: VNF/NS Packages

6

The NS package may contain the following files and directories:
| - nsd.yaml (NS descriptor in YAML format)
| - README (Information regarding the NS)
| - checksum.txt (Contains checksum for each file in package)
| - scripts\ (Directory containing the scripts NS lifecycle events and primitives)
| - icons\ (Directory containing icons and logs for the network wervice)
| - charms\ (Directory containing the scripts NS lifecycle events and primitives)

The VNF package may contain the following files and directories:
| - vnfd.yaml (VNF descriptor file in YAML format)
| - README (Contains README about this VNF package)
| - checksum.txt (Contains checksum for each file in the package)
| - images\ (Directory containing all the VM images for this VNF)
| - scripts\ (Directory containing custom scripts for lifecycle events
and configuration primitives)
| - icons\ (Directory containing the icons)
| - charms\ (Directory containing the configuration charms/plugins)
| - helm-charts\ (Directory containing the helm-charts)

© ETSI

OSM Concepts: VNFd

7

VNFd

VNF Connection
Points

Constituent
VDUs

VDU
Dependencies

VNF
Configuration

Primitives
Internal VLDs

Monitoring/
Scaling

Parameters

© ETSI

OSM Concepts: NSd

8

NSd

NS Connection
Points Constituent VNFs VNF

Dependencies
NS Configuration

PrimitivesVirtual Links Input Parameters

© ETSI

OSM Concepts: VNFd

9

Metadata

Operations Package - “Charm”

- Lifecycle

- Configuration

- Operation

- Integration

CODE

DECLARATIVE

© ETSI

OSM Concepts: VNF

10

Virtual Network Function

● One or more Deployment Units

● Internal networks

● Internal connection points (interfaces)

● Mapping VDU connections to the networks

● External connection points

VDU: Virtual Deployment Unit

● Virtual Machines

● OSM models vCPUs, RAM, Storage, Interfaces,

Performance Capabilities (SR-IOV, EPA)

VNF

© ETSI

OSM Concepts: PNF

11

PNF

Physical Network Function

● Models an already existing physical application.

● It uses the same concepts as the VNF

PDU: Physical Deployment Unit

● Already existing application

● No control over the Lifecycle

● Perform operations on it

© ETSI

OSM Concepts: KNF

12

KNF

Kubernetes Network Function

● Composed of one or more KDUs and the connection points to communicate with other KNFs/VNFs/PNFs

● Specify the networks that need to be already present in the K8s cluster

KDU: Kubernetes Deployment Unit

● Kubernetes applications

● A KDU represents a Helm Chart or a Juju Bundle

© ETSI

OSM Concepts: Network Service

13

● One or more xNFs

● Networks

● Mapping xNF connections to the networks

● Network Service level connection points

NS

© ETSI© ETSI 14

NF Onboarding Process

◉ What is NF Onboarding ?

◉ Onboarding Requiremets

◉ Onboarding Stages

© ETSI

What is Onboarding ?

15

© ETSI

Network Function Onboarding

16

Network function onboarding is an automated methodology for bringing new

network functions into an operational NFV environment

Modeling the network function is very important

So NFs can be:

● instantiated

● scaled in and out

● fully utilized to deliver features

© ETSI

Network Function Onboarding

17

The complete onboarding process implies producing a VNF Package that will be part of the OSM catalogue for its inclusion in a

Network Service.

The onboarded VNF should aim to fulfill the lifecycle stages it requires to function properly.

Hence, the resulting package, should include all the requirements, instructions and elements to achieve the NS lifecycle stages,

which are:

● Basic instantiation (Day-0)

● Service initialization (Day-1)

● Runtime operations (Day-2)

© ETSI

NF Onboarding Process

18

© ETSI

Onboarding
Requirements

◉ Day-0 requirements

◉ Day-1 requirements

◉ Day-2 requirements

19

© ETSI

Onboarding Requirements

20

Each lifecycle stage targets specific configurations in the VNF. These are:

● Management setup during instantiation (Day-0)

● Service initialization right after instantiation (Day-1)

● Re-configuration during runtime (Day-2)

In order to provide a VNF with many capabilities for each lifecycle stage as possible, the related specific requirements should be adressed.

© ETSI

Day-0 requirements

21

During the Day-0 stage, the VNF is instantiated and the management access is established so that the VNF can be configured at a later

stage.

The main requirements to achieve this are:

● Description of each VNF component:

○ The main function of every VNF component (VDU) should be clearly described

○ Internal VLD Network that interconnects VDUs within a VNF

○ Internal CP Element internal to a VNF, maps VDU interfaces to internal VLDs

● Description of each NS component:

○ External VLD Network that interconnects different VNFs within a NS

○ External CP Element exposed externally by a VNF, maps VDU interfaces to external VLDs

© ETSI

Day-1 requirements

22

The aim of Day-1 stage is to configure the VNF so it starts providing the expected service.

The main requirements are:

● Identifying dependencies between components

○ Identify instantiation parameters or special timing requirements

○ Components needing parameters from other components or from the infrastructure

○ Components depending on others for their configuration to be initialized

● Defining the required configuration for service initialization

This initial configuration should activate the service delivered by the VNF

● Identifying the need for instantiation parameters

The VNF Day-1 configuration may require some parameters passed at instantiation time in order to fulfill the needs of the particular

environment or of other VNFs in the Network Service.

© ETSI

Day-2 requirements

23

The main objetive of Day-2 are to be able to re-configure the VNF so its behavior can be modified during runtime.

The main requirements are:

● Identifying dependencies between components

Identify if a VNF component requires a parameter coming from other component for fulfilling runtime operations

● Defining all possible configurations for runtime operations

The set of configurations should be available to be triggered from the orchestrator, either manually by the operator

That set of configurations need to be incorporated by the mechanism that the generic VNF Manager implements. The set of

configurations can be provided by Python scripts, Ansible playbooks, VNF-specific commands that run over SSH, REST API calls, etc.

© ETSI

Day-2 requirements

24

● Defining key performance indicators

The metrics that are relevant to the VNF should be specified, either if they are supposed to be collected from the infrastructure or

directly from the VNF

● Defining closed-loop operations

Closed-loop operations are actions triggered by the status

of a particular metric. The main use cases include:

● Auto-scaling: a VNF component scales horizontally (out/in) to

match the current demand.

● Auto-healing: a VNF component is re-instantiated, reloaded or

reconfigured based on a service status.

© ETSI

Onboarding
Stages

◉ Day 0: VNF Instantiation & Management setup

◉ Day 1: VNF Services Initialization

◉ Day 2: VNF Runtime Operations

25

© ETSI

Onboarding Stages

26

OSM (Open Source MANO) supports the onboarding of all types of network functions whether it is

● Virtualized

● Containerized

● Physical in nature

 The stages for onboarding NFs (network functions) in OSM include

● Creating the NF package that specifies Day-0 (basic instantiation)

● Day-1 (service initialization)

● Day-2 (runtime operations) configurations

© ETSI

Day 0: VNF Instantiation & Management setup

27

The Day-0 configuration includes following steps:

● Build an initial package by using network service descriptors (VNFD/NSD).

● Include the basic configurations for the interconnections of network components.

● Integrate the cloud-init scripts in the descriptors for primary configurations needed to build up a network service like

the OS boot requirements, setting up a hostname, adding SSH keys, configuring network devices and users.

● Configure the virtualized infrastructure

Enable the EPA capabilities in the descriptors like Hugepages, CPU pinning, SR-IOV, or any other data accelerated

features depending on the functional requirements.

© ETSI

Day 0: VNF Instantiation & Management setup

28

Sample Day-0 operations like:

● Building and adding cloud-init scripts

● Setting a default locale

● Setting an instance hostname

● Generating instance SSH private keys or defining passwords

● Adding SSH keys to a user’s .ssh/authorized_keys

● Setting up ephemeral mount points

● Configuring network devices

● Adding users and groups

● Adding files

© ETSI

Day 0: VNF Instantiation & Management setup

29

Prepare the descriptor so that it accurately details the VNF requirements, prepare cloud-init scripts (if needed), and

identify parameters that may have to be provided at later stage.

Building the initial package

Build a VNF package from scratch by using OSM client is a requirement to perform this stage

For the VNF Package

osm package-create --base-directory /home/ubuntu --image myVNF.qcow2 --vcpu 1 --memory 4096

--storage 50 --interfaces 2 --vendor OSM vnf vLB

For the NS Package

osm package-create --base-directory /home/ubuntu --vendor OSM ns vLB

© ETSI

Day 0: VNF Instantiation & Management setup

30

Testing Instantiation of the VNF Package

● Instantiating the VNF with all the required VDUs, images, initial state and NFVI requirements

● Making the VNF manageable from OSM

● Once the VNF Descriptor has been updated with all the Day-0 requirements, its folder needs to be repackaged by using the

OSM CLI which validates and uploads the package to the catalogue

osm vnfpkg-create [VNF Folder]

To test this package, the NS can be launched using the OSM client:

osm ns-create --ns_name [ns name] --nsd_name [nsd name] --vim_account [vim name] \
--ssh_keys [list of public key files]

At launch time, extra instantiation parameters can be passed so that the VNF.

© ETSI

Day 1: VNF Services Initialization

31

Expose the services inside the VNF to be automatically initialized right after the VNF instantiation

To achieve this in OSM is to build a Charm and include it in the descriptor.

The operations code is called “Charm”, and it can handle the lifecycle, configuration, integration, and actions/primitives in your

workloads.

There are two kinds of Charms:

● Proxy Charms: If you are using a fixed image for your workload, which CANNOT be modified

● Native Charms: if the the workload CAN be modified, then the code can live in the same workload

Besides charms, there is another way of configuring network functions, powered by helm-based execution environments

launched as PODs.

© ETSI

Day 1: VNF Services Initialization

32

The Day1 operations should be specified in the VNF descriptor.

Day1 parameters are defined at two different levels:

● VDU-level: used when a VDU needs configuration, which is different than the VDU used for managing the VNF

● VNF-level: for the “management VDU”, used when the configuration applies to the VDU exposing a interface for managing
the whole VNF.

Juju-based or Helm-based execution environments could be used to run those parameters.

© ETSI

Day 2: VNF Runtime Operations

33

Typical operations like following requires additional configuration in the VNF packages:

● Reconfigurations needed after the service is running

● Monitoring of the specific metrics for the infrastructure

● Scaling on the basis of monitoring analysis

● Operations to enable closed-loop automation

● Different orchestration capabilities like auto-scaling, auto-healing, self-monitoring, etc.

To achieve reconfiguration in OSM Day-2 primitives needs be added to the descriptor

Day-2 primitives are actions invoked on demand, which is defined under the config-primitive block at the VNF or VDU level

© ETSI

Day 1/2 by using Helm based EEs

34

Since OSM version 8, NF configurations can also be done with Helm-based execution environments, which deploy a pair of extra pods in

the K8s namespace.These PODs follow the VNF lifecycle (as charms do) to run day-1 and day-2 primitives

The EE interacts with the managed NF (e.g. via SSH) to manage NFs by OSM.

OSM communicates with its EE to trigger actions via gRPC calls.

In order to ease the NF onboarding tasks, there is already a helm chart template available named eechart to be included under

helm-charts subdirectory of the VNF package to run actions easily

helm-charts
└── eechart
 ├── Chart.yaml
 ├── charts
 ├── source
 │ ├── install.sh
 │ ├── install_nginx.sh
 │ ├── mylib.py
 │ ├── playbook.yaml
 │ ├── run_ssh.sh
 │ └── vnf_ee.py
 ├── templates
 └── values.yaml

© ETSI

Day 1/2 EEs and config primitives with Helm

35

vnfd:
...
 lcm-operations-configuration:
 operate-vnf-op-config:
 day1-2:
 - config-primitive:
 config-access:
 ssh-access:
 default-user: ubuntu
 required: true
 execution-environment-list:
 - external-connection-point-ref: vnf-mgmt-ext
 helm-chart: eechart
 id: sample_ee
 id: sample_ee-vnf
 initial-config-primitive:
 - execution-environment-ref: sample_ee
 name: config
 parameter:
 - name: ssh-hostname
 value: <rw_mgmt_ip>
 - name: ssh-username
 value: ubuntu
 seq: 1

© ETSI

Day 1/2 operations by using Charms

36

OSM component VCA (VNF configuration and abstraction) is responsible for the day-1 and day-2 operations

Using charms for Day1/2 operation process:

● Creating a charm as an operator for the network function.

● Defining the primitives/actions in charms that need to be performed after the instantiation of service i.e. Initial charm

configuration, authentication, and actions required during the service is up and running, etc.

● Integrating the configured charm in the OSM descriptors

© ETSI

Day 1/2 EEs and config primitives with Juju Charms

37

vnfd:
...
 lcm-operations-configuration:
 operate-vnf-op-config:
 day1-2:
 - id: ha_proxy_charm-vnf
 execution-environment-list:
 - id: simple-ee
 juju:
 charm: simple
 config-access:
 ssh-access:
 default-user: ubuntu
 required: true
 config-primitive:
 ...

 vnfd:
 ...
 config-primitive:
 - name: touch
 execution-environment-ref: simple-ee
 parameter:
 - data-type: STRING
 default-value: /home/ubuntu/touched
 name: filename
 initial-config-primitive:
 - name: config
 execution-environment-ref: simple-ee
 parameter:
 - name: ssh-hostname
 value: <rw_mgmt_ip>
 - name: ssh-password
 value: osm4u
 seq: 1
 - name: touch
 execution-environment-ref: simple-ee
 parameter:
 - data-type: STRING
 name: filename
 value: /home/ubuntu/first-touch
 seq: 2

© ETSI© ETSI

Thank You!

