
© ETSI

The SPIDER Platform – Deployment and
Management of Virtual Topologies in 5G

Programmable Environments
Roberto Bruschi – University of Genoa, Italy

Chiara Lombardo – CNIT, S2N National Lab, Genoa, Italy

© ETSI

The SPIDER Project

• Goal: deliver a next-generation, extensive and replicable cyber
range platform for 5G offering cybersecurity emulation, training
and investment decision support.

• SPIDER features integrated tools for cyber testing,
including advanced emulation tools, active learning training
methods, and real time econometric models.

• SPIDER supports both self-paced and team-based exercises and
allows multiple stakeholders to rely on the same platform in a
secure and isolated fashion.

© ETSI

The SPIDER Architecture

© ETSI

The SPIDER NFV Platform

Ubuntu OS Debian OS Centos OS

Ansible

Testbed
Manager

Netdriver

Servers Network devices Physical devices (base stations, UE
emulators, UE hub)

NFVCL
Ansible

OSS NBI

Guacamole

Web-based remote control of UEs

App and Net Slices

Virtual Topology

Virtual
Topology

Testbed
Monitoring

IaaS PaaS

© ETSI

The Testbed Manager

• The Testbed Manager allows to manage all the available physical, computing and network
components, thanks to a GUI that is linked to all the software tools active in the system.

• It provides the users with a safe and isolated working environment, as well as allows
for automatically setting up the platform for an exercise and restoring it when it is
finished.

• For each exercise, the starting configuration is saved and includes the OpenStack
networks and routers, the required VMs, etc. After an exercise is run, it is possible to
automatically restore the whole configuration by clicking on a button. This operation
invokes MaaS that proceeds with restoring the saved configuration from the operating
system up to the OpenStack instance.

© ETSI

1 of 2 – The Testbed Manager Demo

TestbedManager

© ETSI

The NFV Convergence Layer

Day 0/1/2

•Build and dynamically manage complete network environments via multiple NSs.
•Blueprint: metamodel that produces generalized NS templates. The number and the
type of NFV services is dynamically selected by the blueprint according to the requested
parameters.​
• Support basic VIM terraforming operations and maintain a topology of the virtual
network infrastructure. Networks in the topology can be used as end-points for NFV
services.

© ETSI

The Network Service Blueprint

• The NS Descriptor (NSD) specified by ETSI NFV is composed of a pre-determined,
unmodifiable number of different VNFs and links.

• No standard VNF Manager, only a standard “container for VNFM” (i.e., Juju)

• Network service blueprint: a new, generalized structure can be seen as an LCM manager
of a coordinated set of NFV NSs to realize a comprehensive network service (e.g., a radio-
mobile network, a VoIP system, etc.):

• Day 0: terraforming VIMs with needed resources, types of PNFs/VNFs/KNFs, their inter-connections, and
the virtual networks to be used towards the outside.

• Day 1/2: run-time information collection (e.g., dynamic IP addresses, KPIs, etc.), configuration files and
commands (both as templates filled by run-time data) to run on SW processes inside PNFs/VNFs/KNFs.

• Day N: cleaning resources and instances (even in a part of NSs within the blueprint).

© ETSI

The NFVCL Workflow

Day 0

Intent-based

Service Request

(REST)

• Select the Blueprint

from the catalogue

• Retrieve which PNFs

should be used

• Decide how many and

which NSDs has to be

generated

• Compose the NSDs

and onboard them to

OSM

OSM

Day 1

• Create a NS instance

from each onboarded

NSD

• Monitor the instantiation

process

• In case of errors, roll-

back

• In case of success,

retrieve instantiation

parameters (e.g., IP

addresses, etc.)

Day 2

• Produce any NS level config

parameters as need (e.g., tunnel

identifiers)

• For each running VNFi select the

correct NFVCL Configurator module

• Trigger the Configurator Modules to

generate Day2 Config files and

commands

• Send to OSM Day2 primitives (one

per VNFi) based on the Configurator

output

• Monitor the Day2 result and send

feedback to the OSS

…

Openstack/Kubernetes

Day0/1 VNFM (JuJu charm/Helm chart)

VNF/PNF/KNF instances

Day N

• Remove one or more NS

instance

© ETSI

Day-2 Operations with the Flex-charm (for VNFs and
PNFs)

Blueprint

NFVCL

…

…

Configuration files

Terminal/REST/… Commands

(Ansible Playbooks)

C
o
nf

ig
ur

a
to

r
1

1

Day 2 primitive to the OSM NBI

Send the list of Config files and

Ansible Playbooks (including URL at

NFVCL, final path, final names, order

of execution, …)

OSM

Flexcharm VNFi 1

2

Content transfer to the Flexcharm

All the playbooks and configuration

files are downloaded (through HTTP)

locally in the Flexcharm container in

OSM

OpenStack

…
3

Ansible Playbook Execution

Performed through SSH or REST

Config Files are transferred as part

of the commands

Commands are exectuted in the

order decided by the NFVCL

© ETSI

2 of 2 –The NFVCL Demo

