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The SPIDER Project

• Goal: deliver a next-generation, extensive and replicable cyber 
range platform for 5G offering cybersecurity emulation, training 
and investment decision support.

• SPIDER features integrated tools for cyber testing, 
including advanced emulation tools, active learning training 
methods, and real time econometric models.

• SPIDER supports both self-paced and team-based exercises and 
allows multiple stakeholders to rely on the same platform in a 
secure and isolated fashion.
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The SPIDER Architecture
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The SPIDER NFV Platform
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The Testbed Manager

• The Testbed Manager allows to manage all the available physical, computing and network 
components, thanks to a GUI that is linked to all the software tools active in the system.

• It provides the users with a safe and isolated working environment, as well as allows 
for automatically setting up the platform for an exercise and restoring it when it is 
finished.

• For each exercise, the starting configuration is saved and includes the OpenStack 
networks and routers, the required VMs, etc. After an exercise is run, it is possible to 
automatically restore the whole configuration by clicking on a button. This operation 
invokes MaaS that proceeds with restoring the saved configuration from the operating 
system up to the OpenStack instance.
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1 of 2 – The Testbed Manager Demo
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The NFV Convergence Layer

Day 0/1/2

•Build and dynamically manage complete network environments via multiple NSs.
•Blueprint: metamodel that produces generalized NS templates. The number and the 
type of NFV services is dynamically selected by the blueprint according to the requested 
parameters.​
• Support basic VIM terraforming operations and maintain a topology of the virtual 
network infrastructure. Networks in the topology can be used as end-points for NFV 
services.
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The Network Service Blueprint

• The NS Descriptor (NSD) specified by ETSI NFV is composed of a pre-determined, 
unmodifiable number of different VNFs and links. 

• No standard VNF Manager, only a standard “container for VNFM”  (i.e., Juju)

• Network service blueprint: a new, generalized structure can be seen as an LCM manager 
of a coordinated set of NFV NSs to realize a comprehensive network service (e.g., a radio-
mobile network, a VoIP system, etc.):

• Day 0: terraforming VIMs with needed resources, types of PNFs/VNFs/KNFs, their inter-connections, and 
the virtual networks to be used towards the outside.

• Day 1/2: run-time information collection (e.g., dynamic IP addresses, KPIs, etc.), configuration files and 
commands (both as templates filled by run-time data) to run on SW processes inside PNFs/VNFs/KNFs.

• Day N: cleaning  resources and instances (even in a part of NSs within the blueprint).
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The NFVCL Workflow
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Day-2 Operations with the Flex-charm (for VNFs and 
PNFs)
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2 of 2 –The NFVCL Demo


