
© ETSI 2017

OSM Hackfest - Session 5
Adding day-1/day-2 configuration to your VNF

Creating your first proxy charm
Adam Israel, Canonical

Gerardo García, Telefónica

© ETSI 2017

What is Juju?

• Juju is an open source modeling tool, composed of a controller,
models, and charms, for operating software in the cloud.

• Juju can handle configuration, relationships between services,
lifecycle and scaling.

• This ensures that common elements such as databases, messaging
systems, key value stores, logging infrastructure and other ‘glue’
functions are available as charms for automatic integration,
reducing the burden on vendors and integrators.

2

© ETSI 2017

What is a Charm?

• A charm is a collection of software containing all of the logic to
install, configure, and scale cloud-based applications in a
repeatable and reliable way.

• Charms are installed on a machine, running a cloud image, and
handle the full lifecycle of an application, including day-0, day-1,
and day-2 config.

• But...

3

© ETSI 2017

Proxy Charms

• OSM Release THREE* uses “proxy charms”, where the charm is
installed into an LXD container, and is only responsible for day-1
and day-2 configuration, executed remotely (typically via ssh).

• Don’t worry! Proxy charm support is being expanded to support
more features of full charms, and will still be supported in future
releases.

* Full charm support is a feature targeted at R4.

4

© ETSI 2017

Proxy Charms

Here is a simple diagram showing how a proxy charm fits into the OSM workflow:

+---------------------+ +---------------------+

| <----+ |

| Resource | | Service |

| Orchestrator (RO) +----> Orchestrator (SO) |

| | | |

+------------------+--+ +-------+----^--------+

| | |

| | |

| | |

+-----v-----+ +-v----+--+

| <-------+ |

| Virtual | | Proxy |

| Machine | | Charm |

| +-------> |

+-----------+ +---------+

5

● A VNF package is instantiated via the SO

● The SO requests a virtual machine from the RO

● The RO instantiates a VM with your VNF image

● The SO instructs the VCA to deploy a VNF proxy

charm, and tells it how to access your VM

(hostname, user name, and password)

© ETSI 2017

Preparing your development
environment

© ETSI 2017

Install the charm tools

Install charm tools via snap:
$ sudo snap install charm

charm 2.2.3 from 'charms' installed

$ charm version

charm 2.2.2

charm-tools 2.2.3

7

© ETSI 2017

Setup your Charming environment

Create the directories we’ll use for our charm:

mkdir -p ~/charms/layers

Tell the charm command where our workspace is (for best results,
add this to ~/.bashrc):

export JUJU_REPOSITORY=~/charms

8

© ETSI 2017

Understanding charms

© ETSI 2017

Reactive Framework

• The Reactive programming pattern that allows a charm to
respond to changes in state, including lifecycle events, in an
asynchronous way.

• Lifecycle events may tell the charm to install, start, or stop an
application, to perform leadership election, to collect metrics, or
to upgrade the charm itself.

10

© ETSI 2017

Layers

• Layers are encapsulations of charm code that lend
themselves to being reused across charms.

• The Base layer contains the core code needed for
other layers to function.

• Vnfproxy is a runtime layer which provides
common functionality to interoperate with a VNF.

• Simple is the charm layer containing code to
manage your vnf.

11

+------------------+

| |

| Layers |

| |

| +------------+ |

| | | |

| | Base | |

| | | |

| +------+-----+ |

| | |

| +------v-----+ |

| | | |

| | vnfproxy | |

| | | |

| +------+-----+ |

| | |

| +------v-----+ |

| | | |

| | simple | |

| | | |

| +------------+ |

| |

+------------------+

© ETSI 2017

Creating a VNF Proxy charm

Change into the layers folder

$ cd $JUJU_REPOSITORY/layers

Invoke the charm command to create a charm layer

called ‘simple’

$ charm create simple

$ cd simple

12

© ETSI 2017

Anatomy of a charm layer

To the right is the contents of your
simple charm.

For the purposes of this example, we
will ignore the struck-through files.

13

$JUJU_REPOSITORY/layers

└ ── simple

├ ── config.yaml

├ ── icon.svg

├ ── layer.yaml

├ ── metadata.yaml

├ ── reactive

│ └ ── simple.py

├ ── README.ex

└ ── tests

├ ── 00-setup

└ ── 10-deploy

© ETSI 2017

Anatomy of a layer

layer.yaml defines which base and
runtime layers your charm depends
on.

Edit layer.yaml to include the vnfproxy
layer:

14

$JUJU_REPOSITORY/layers

└ ── simple

├ ── config.yaml

├ ── icon.svg

├ ── layer.yaml

├ ── metadata.yaml

├ ── reactive

│ └ ── simple.py

├ ── README.ex

└ ── tests

├ ── 00-setup

└ ── 10-deploy

includes: ['layer:basic', 'layer:vnfproxy']

© ETSI 2017

Anatomy of a layer

Edit metadata.yaml with the name and
description of your charm:

15

$JUJU_REPOSITORY/layers

└ ── simple

├ ── config.yaml

├ ── icon.svg

├ ── layer.yaml

├ ── metadata.yaml

├ ── reactive

│ └ ── simple.py

├ ── README.ex

└ ── tests

├ ── 00-setup

└ ── 10-deploy

name: simple

summary: A simple VNF proxy charm

maintainer: Name <user@domain.tld>

subordinate: false

series: ['xenial']

© ETSI 2017

Building your first charm

$ charm build
build: Destination charm directory: ~/charms/builds/simple

build: Please add a `repo` key to your layer.yaml, with a url from which your layer can be

cloned.

build: Processing layer: layer:basic

build: Processing layer: layer:sshproxy

build: Processing layer: layer:vnfproxy

build: Processing layer: simple (from .)

proof: W: Includes template README.ex file

proof: W: README.ex includes boilerplate: Step by step instructions on using the charm:

proof: W: README.ex includes boilerplate: You can then browse to http://ip-address to configure

the service.

proof: W: README.ex includes boilerplate: - Upstream mailing list or contact information

proof: W: README.ex includes boilerplate: - Feel free to add things if it's useful for users

proof: I: all charms should provide at least one thing

16

© ETSI 2017

Examining the compiled charm

The `charm build` command takes all of the layers defined in
layer.yaml, combines them into a single charm, and caches the
dependencies in the `wheelhouse` directory for faster installation.

$ ls $JUJU_REPOSITORY/builds/simple

actions bin copyright hooks layer.yaml Makefile

reactive README.md simple tox.ini actions.yaml config.yaml

deps icon.svg lib README.ex metadata.yaml tests

requirements.txt wheelhouse

17

© ETSI 2017

Adding an action

Actions are functions that can be called automatically when a VNF is
initialized or on-demand by the operator. In OSM terminology, we
know these as config primitives.

18

© ETSI 2017

Define an action

Let’s create `actions.yaml` in the root of the
simple charm:

19

touch:

description: "Touch a file on the VNF."

params:

filename:

description: "The name of the file to touch."

type: string

default: ""

required:

- filename

© ETSI 2017

Create the action handler

$ mkdir actions

Create `actions/touch`, with the
contents to the right.

When you’re done, mark the
script executable:

$ chmod +x actions/touch

20

#!/usr/bin/env python3

import sys

sys.path.append('lib')

from charms.reactive import main, set_state

from charmhelpers.core.hookenv import action_fail,

action_name

set_state('actions.{}'.format(action_name()))

try:

main()

except Exception as e:

action_fail(repr(e))

Note: The same content has to be used for every action in the charm layer. It is only a boilerplate script to invoke the reactive framework

© ETSI 2017

Handle the action

Edit
`reactive/simple.py`.

This is where all
reactive states are
handled.

21

from charmhelpers.core.hookenv import (

action_get,

action_fail,

action_set,

status_set,

)

from charms.reactive import (

remove_state as remove_flag,

set_state as set_flag,

when,

when_not,

)

import charms.sshproxy

© ETSI 2017

Handle the action

Edit
`reactive/simple.py`.

This is where all
reactive states are
handled.

22

Set the charm’s state to active so the SO knows

it’s ready to work.

@when_not('simple.installed')

def install_simple_proxy_charm():

set_flag('simple.installed')

status_set('active', 'Ready!')

© ETSI 2017

Handle the action

Edit
`reactive/simple.py`.

This is where all
reactive states are
handled.

23

Define what to do when the `touch` primitive is invoked.

@when('actions.touch')

def touch():

err = ''

try:

filename = action_get('filename')

cmd = ['touch {}'.format(filename)]

result, err = charms.sshproxy._run(cmd)

except:

action_fail('command failed:' + err)

else:

action_set({'output': result})

finally:

remove_flag('actions.touch')

Note: For every action in the charm layer you need to add a @when decorator and the function to be run

© ETSI 2017

That’s it!

We’re ready to compile the charm with our new action:

$ charm build

24

© ETSI 2017

Adding Charms to your VNF Descriptor
With subtitle

© ETSI 2017

VNF diagram
Changes with respect to ‘hackfest3-vnf’ highlighted in yellow

26

VNF: hackfest3charmed-vnf

VDU: mgmtVM

- Image name: hackfest3-mgmt

- VM Flavor: 1 CPU, 1GB RAM,

10 GB disk

- Interfaces:

- mgmtVM-eth0: VIRTIO

- mgmtVM-eth1: VIRTIO

- Cloud init input

External Connection point: vnf-mgmt

mgmtVM-eth0

VL: internal

External Connection point: vnf-data

VDU: dataVM

- Image name: hackfest3-mgmt

- VM Flavor: 1 CPU, 1GB RAM,

10 GB disk

- Interfaces:

- dataVM-eth0: VIRTIO

- dataVM-xe0: VIRTIO

mgmtVM-eth1 dataVM-eth0 dataVM-xe0

ICP: dataVM-internalICP: mgmtVM-internal

vnf-configuration:

- juju

- initial-config-primitive

- config-primitive

© ETSI 2017

Generate the skeleton of the VNF Package
and write the VNF descriptor

Create a skeleton folder with all the files required for a single-VM
VNF package

./devops/descriptor-packages/tools/generate_descriptor_pkg.sh -t vnfd
--image hackfest3-mgmt -c hackfest_3charmed

Go into the VNF folder and write the VNF descriptor
‘hackfest_3charmed_vnfd.yaml’. To save time, replace the auto-
generated descriptor by this one:

https://osm-download.etsi.org/ftp/osm-3.0-three/2nd-
hackfest/other/hackfest_3charmed_vnfd.yaml

27

https://osm-download.etsi.org/ftp/osm-3.0-three/2nd-hackfest/other/hackfest_3charmed_vnfd.yaml

© ETSI 2017

Charms and Descriptors

Add the vnf-configuration section, as
seen to the right, to the end of your
descriptor, with the same level of
indentation as the name of the VNF.

initial-config-primitive defines the
primitives run at day-1, when the charm
is instantiated.

config-primitive defines the primitives
available to run as day-2 configuration.

28

name: ‘myvnf’

...

vnf-configuration:

initial-config-primitive:

config-primitive:

juju:

charm: simple

© ETSI 2017

Charms and Descriptors

29

Fill in the initial-config-primitive section. The <rw_mgmt_ip> token will be replaced with the IP address

of your VM, allowing the charm to ssh to it.

initial-config-primitive:

- seq: '1'

name: config

parameter:

- name: ssh-hostname

value: <rw_mgmt_ip>

- name: ssh-username

value: ubuntu

- name: ssh-password

value: osm4u

- seq: ‘2'

name: touch

parameter:

- name: filename

- value: '/home/ubuntu/first-touch'

© ETSI 2017

Charms and Descriptors

30

Fill in the config-primitive section. This defines the primitive(s) available to run by the

operator.

config-primitive:

- name: touch

parameter:

- name: filename

data-type: STRING

default-value: '/home/ubuntu/touched'

© ETSI 2017

Validate your VNF descriptor

Use the validation tool to check that the descriptor is syntactically
correct:

./devops/descriptor-packages/tools/upgrade_descriptor_version.py --test
<VNF_DESCRIPTOR_FILE>

If an error message is shown, review the descriptor and validate
again. Otherwise, the descriptor is syntactically correct.

31

© ETSI 2017

Complete your VNF Package with the charm,
the cloud-init file and the logo

• Copy your compiled charm to descriptor folder
(e.g. ~/hackfest_3charmed_vnfd)
• cp -r ~/charms/builds/simple ~/hackfest_3charmed_vnfd/charms

• Download the logo and copy it into the ‘icons’ folder:
• https://osm-download.etsi.org/ftp/osm-3.0-three/2nd-hackfest/other/osm.png

• Download the cloud-config file and copy it into the ‘cloud_init’
folder:
• https://osm-download.etsi.org/ftp/osm-3.0-three/2nd-hackfest/other/cloud-

config.txt

32

https://osm-download.etsi.org/ftp/osm-3.0-three/2nd-hackfest/other/osm.png
https://osm-download.etsi.org/ftp/osm-3.0-three/2nd-hackfest/other/cloud-config.txt

© ETSI 2017

Generate the VNF package and upload it to
the UI

• Generate the VNF Package .tar.gz
• ~/devops/descriptor-packages/tools/generate_descriptor_pkg.sh -t vnfd -N

hackfest_3charmed_vnfd
Note: the argument -N is important if you want to keep the package folder and files
after creating the package.

• Upload hackfest_3charmed_vnfd.tar.gz to OSM UI

33

© ETSI 2017

Create NS, instantiate
and run config primitives

With subtitle

© ETSI 2017

NS diagram
Changes highlighted in yellow

35

NS: hackfest3charmed-ns

VNF: hackfest3charmed-vnf

CP: vnf-data

VL: mgmtnet

VNF: hackfest3charmed-vnf

CP: vnf-mgmt

VL: datanet

CP: vnf-data

CP: vnf-mgmt

© ETSI 2017

Deploying NS in the UI

• Go to Launchpad > Instantiate

• Select hackfest3charmed-ns and click Next

• Complete the form
• Add a name to the NS

• Select the Datacenter where the NS will be deployed

• Add SSH key

• Go to the dashboard to see the instance and get the mgmt IP address of the VNF

• Connect to each VNF:
• ssh ubuntu@<IP>

• Check that the cloud-config file was executed;
• The file ‘/home/ubuntu/first-touch’ should exist

36

© ETSI 2017

Testing VNF primitives

• Check that the initial-config-primitive was executed

• File ‘/home/ubuntu/first-touch’ should have been created

• Go to Launchpad -> Dashboard, and open the NS instance.

• Click on a VNF, run the VNF config primitive ‘touch’ from the
dashboard, and check that the corresponding file is created.

37

© ETSI 2017

Relevant links

• Juju
• https://jujucharms.com/

• Charm Developers Guide
• https://jujucharms.com/docs/2.3/developer-getting-started

• Creating a VNF Charm
• https://osm.etsi.org/wikipub/index.php/Creating_your_own_VNF_charm_(Relea

se_THREE)
• Creating a VNF Package

• https://osm.etsi.org/wikipub/index.php/Creating_your_own_VNF_package_(Rel
ease_THREE)

• Session 5 charm and descriptors
• https://github.com/AdamIsrael/osm-hackfest

38

https://jujucharms.com/
https://jujucharms.com/docs/2.3/developer-getting-started
https://osm.etsi.org/wikipub/index.php/Creating_your_own_VNF_charm_(Release_THREE)
https://osm.etsi.org/wikipub/index.php/Creating_your_own_VNF_package_(Release_THREE)
https://github.com/AdamIsrael/osm-hackfest

© ETSI 2017

Example VNF Charms

• Using Ansible
• https://github.com/5GinFIRE/mano/tree/master/charms/ansible-charm

• vpe-router, demoed at MWC 2016
• https://github.com/AdamIsrael/vpe-router

• Hackfest examples
• https://github.com/AdamIsrael/osm-hackfest

39

https://github.com/5GinFIRE/mano/tree/master/charms/ansible-charm
https://github.com/AdamIsrael/vpe-router
https://github.com/AdamIsrael/osm-hackfest

© ETSI 2017

The End
La fin

