
© ETSI 2017

OSM Hackfest – Session 7a
Adding day-1/day-2 configuration to your VNF

Creating your first proxy charm
Adam Israel (Canonical)

© ETSI 2017

What is Juju?

• Juju is an open source modeling tool, composed of a controller,
models, and charms, for operating software in the cloud.

• Juju can handle configuration, relationships between services,
lifecycle and scaling.

• This ensures that common elements such as databases, messaging
systems, key value stores, logging infrastructure and other ‘glue’
functions are available as charms for automatic integration,
reducing the burden on vendors and integrators.

2

© ETSI 2017

What is a Charm?

• A charm is a collection of software containing all of the logic to
install, configure, and scale cloud-based applications in a
repeatable and reliable way.

• Charms are installed on a machine, running a cloud image, and
handle the full lifecycle of an application, including day-0, day-1,
and day-2 config.

• But...

3

© ETSI 2017

Proxy Charms

• OSM Release FOUR* uses “proxy charms”, where the charm is
installed into an LXD container, and is only responsible for day-1
and day-2 configuration, executed remotely (typically via ssh).

• Don’t worry! Proxy charm support is being expanded to support
more features of full charms, and will still be supported in future
releases.

* Full charm support is a feature targeted for a R4 point release.

4

© ETSI 2017

Proxy Charms

Here is a simple diagram showing how a proxy charm fits into the OSM workflow:

+---------------------+ +-------------------+

| <----+ |

| Resource | | Lifecycle |

| Orchestrator (RO) +----> Management (LCM) |

| | | |

+-----+---------------+ +------+----^-------+

| | |

| | |

| | |

+-----v-----+ +---------+ +-+----+--+

| <----+ <----+ |

| Virtual | | Proxy | | N2VC/ |

| Machine | | Charm | | VCA |

| +----> +----> |

+-----------+ +---------+ +---------+

5

 A VNF package is instantiated via the LCM

 The LCM requests a virtual machine from the RO

 The RO instantiates a VM with your VNF image

 The LCM instructs N2VC, using the VCA, to deploy

a VNF proxy charm, and tells it how to access your

VM (hostname, user name, and password)

© ETSI 2017

Preparing your development
environment

© ETSI 2017

Install the charm tools

Install charm tools via snap:
$ sudo snap install charm
charm 2.2.3 from 'charms' installed

$ charm version

charm 2.2.2
charm-tools 2.2.3

7

© ETSI 2017

Setup your Charming environment

Create the directories we’ll use for our charm:

mkdir -p ~/charms/layers

Tell the charm command where our workspace is (for best results,
add this to ~/.bashrc):

export JUJU_REPOSITORY=~/charms

8

© ETSI 2017

Understanding charms

© ETSI 2017

Reactive Framework

• The Reactive programming pattern that allows a charm to respond
to changes in state, including lifecycle events, in an asynchronous
way.

• Lifecycle events may tell the charm to install, start, or stop an
application, to perform leadership election, to collect metrics, or to
upgrade the charm itself.

10

© ETSI 2017

Layers

• Layers are encapsulations of charm code that lend
themselves to being reused across charms.

• The Base layer contains the core code needed for
other layers to function.

• Vnfproxy is a runtime layer providing common
functionality to interoperate with a VNF.

• Simple is the charm layer containing code to
manage your vnf.

11

+------------------+

| |

| Layers |

| |

| +------------+ |

| | | |

| | Base | |

| | | |

| +------+-----+ |

| | |

| +------v-----+ |

| | | |

| | vnfproxy | |

| | | |

| +------+-----+ |

| | |

| +------v-----+ |

| | | |

| | simple | |

| | | |

| +------------+ |

| |

+------------------+

© ETSI 2017

Creating a VNF Proxy charm

Change into the layers folder

$ cd $JUJU_REPOSITORY/layers

Invoke the charm command to create a charm layer called
‘simple’

$ charm create simple

$ cd simple

12

© ETSI 2017

Anatomy of a charm layer

To the right is the contents of your
simple charm.

For the purposes of this example, we
will ignore the struck-through files.

13

$JUJU_REPOSITORY/layers

└── simple

├── config.yaml

├── icon.svg

├── layer.yaml

├── metadata.yaml

├── reactive

│ └── simple.py

├── README.ex

└── tests

├── 00-setup

└── 10-deploy

© ETSI 2017

Anatomy of a layer

layer.yaml defines which base and
runtime layers your charm depends
on.

Edit layer.yaml to include the vnfproxy
layer:

14

$JUJU_REPOSITORY/layers

└── simple

├── config.yaml

├── icon.svg

├── layer.yaml

├── metadata.yaml

├── reactive

│ └── simple.py

├── README.ex

└── tests

├── 00-setup

└── 10-deploy

includes: ['layer:basic', 'layer:vnfproxy']

options:

basic:

use_venv: false

© ETSI 2017

Anatomy of a layer

Edit metadata.yaml with the name and
description of your charm:

15

$JUJU_REPOSITORY/layers

└── simple

├── config.yaml

├── icon.svg

├── layer.yaml

├── metadata.yaml

├── reactive

│ └── simple.py

├── README.ex

└── tests

├── 00-setup

└── 10-deploy

name: simple

summary: A simple VNF proxy charm

maintainer: Name <user@domain.tld>

subordinate: false

series: ['xenial']

© ETSI 2017

Building your first charm

$ charm build
build: Destination charm directory: ~/charms/builds/simple
build: Please add a `repo` key to your layer.yaml, with a url from which your layer can be cloned.
build: Processing layer: layer:basic
build: Processing layer: layer:sshproxy
build: Processing layer: layer:vnfproxy
build: Processing layer: simple (from .)
proof: W: Includes template README.ex file
proof: W: README.ex includes boilerplate: Step by step instructions on using the charm:
proof: W: README.ex includes boilerplate: You can then browse to http://ip-address to configure the
service.
proof: W: README.ex includes boilerplate: - Upstream mailing list or contact information
proof: W: README.ex includes boilerplate: - Feel free to add things if it's useful for users
proof: I: all charms should provide at least one thing

16

© ETSI 2017

Examining the compiled charm

The `charm build` command takes all of the layers defined in
layer.yaml, combines them into a single charm, and caches the
dependencies in the `wheelhouse` directory for faster installation.

$ ls $JUJU_REPOSITORY/builds/simple

actions bin copyright hooks layer.yaml Makefile reactive README.
md simple tox.ini actions.yaml config.yaml deps icon.svg lib READ
ME.ex metadata.yaml tests requirements.txt wheelhouse

17

© ETSI 2017

Adding an action

Actions are functions that can be called automatically when a VNF is
initialized (day-1 configuration) or on-demand by the operator (day-
2 configuration).

In OSM terminology, we know these as config primitives.

18

© ETSI 2017

Define an action

Let’s create `actions.yaml` in the root of the
simple charm:

19

touch:

description: "Touch a file on the VNF."

params:

filename:

description: "The name of the file to touch."

type: string

default: ""

required:

- filename

© ETSI 2017

Create the action handler

$ mkdir actions

Create `actions/touch`, with
the contents to the right.

When you’re done, mark the
script executable:

$ chmod +x actions/touch

20

#!/usr/bin/env python3

import sys

sys.path.append('lib')

from charms.reactive import main, set_flag

from charmhelpers.core.hookenv import action_fail, action_name

set_flag('actions.{}'.format(action_name()))

try:

main()

except Exception as e:

action_fail(repr(e))

Note: The same content has to be used for every action in the charm layer. It is only a boilerplate script to invoke the reactive framework

© ETSI 2017

Handle the action

Edit
`reactive/simple.py`.

This is where all
reactive states are
handled.

21

from charmhelpers.core.hookenv import (

action_get,

action_fail,

action_set,

status_set,

)

from charms.reactive import (

clear_flag,

set_flag,

when,

when_not,

)

import charms.sshproxy

© ETSI 2017

Handle the action

Edit
`reactive/simple.py`.

This is where all
reactive states are
handled.

22

Set the charm’s state to active so the LCM knows

it’s ready to work.

@when_not('simple.installed')

def install_simple_proxy_charm():

set_flag('simple.installed')

status_set('active', 'Ready!')

© ETSI 2017

Handle the action

Edit
`reactive/simple.py`.

This is where all
reactive states are
handled.

23

Define what to do when the `touch` primitive is invoked.

@when('actions.touch')

def touch():

err = ''

try:

filename = action_get('filename')

cmd = ['touch {}'.format(filename)]

result, err = charms.sshproxy._run(cmd)

except:

action_fail('command failed:' + err)

else:

action_set({'output': result})

finally:

clear_flag('actions.touch')

Note: For every action in the charm layer you need to add a @when decorator and the function to be run

© ETSI 2017

That’s it!

We’re ready to compile the charm with our new action:

$ charm build

24

© ETSI 2017

Find us at:
osm.etsi.org

osm.etsi.org/wikipub

