
© ETSI 2019

OSM Hackfest – Session 7
Performance & Fault Management

Benjamin Diaz (Whitestack)

© ETSI 2019

Introduction

Performance and Fault Management capabilities have made important

progress in Release FIVE.

Metrics collection is now automatic, based on descriptor definitions, and

supported from both infrastructure and VNFs (through VCA)

© ETSI 2019

MON Architecture

Brief review of MON’s architecture

mon-central
creates alarms and handles
VIM accounts

kafka 🚌

alarm_requests (POL)
vim_account (LCM)

mysql

mon-collector
iterates over
vnfrs and
collects metrics

VIM/N2VC metric
plugins

prometheus
exporter

Prometheus
TSDB

vnfr iteration (mongodb)

mon-evaluator
iterates & evaluates alarms, triggering
notifications to the bus

alarm_
notifications

(POL)

© ETSI 2019

Performance Management
- OSM “MON” Component -

4

© ETSI 2019

PM – What’s available at Release FIVE?

(1) MON collects VIM/VNF metrics defined at VNFD,
from VNFs (through N2VC) and/or from NFVI (through

VIMs)

OPTIONAL tools

MON

VNF Metrics through

VCA

(3) Analytics UI like Grafana can use
existing plugins with well-known
TSDB

TSDB
Prometheus

mon-exporter
websvc port 8000

mon-collector

(2) Prometheus TSDB stores metrics exposed by MON
and exposes them at UI and its REST API via port 9091

© ETSI 2019

• Support for VIM metrics (related to VDUs)

• OpenStack support ready since 5.0.0

• vROps support ready in master (next 5.0.x point release)

• AWS support pending

• Supported metrics are cpu_utilization, average_memory_utilization, among others.

• Support for VNF-specific metrics.

• Collection via proxy charms ‘juju metrics’ layer

• Commands or API calls are executed from VCA to collect metrics every 5 minutes (fixed
period)

• Monitoring happens on a per-VDU basis.

Main features

https://docs.jujucharms.com/2.3/en/developer-metrics

© ETSI 2019

Model review - Sample VNFD

vdu:

id: apache_vdu

...

monitoring-param:

- id: "apache_cpu_util"

nfvi-metric: "cpu_utilization"

...

monitoring-param:

- id: "apache_vnf_cpu_util"

name: "apache_vnf_cpu_util"

aggregation-type: AVERAGE

vdu-monitoring-param:

vdu-ref: "apache_vdu"

vdu-monitoring-param-ref: "apache_cpu_util"

• VDU Metric Collection from VIM

nfvi-metric corresponds to a established metric name at MON

© ETSI 2019

Model review - Sample VNFD

vdu:

- id: haproxy_vdu

...

interface:

- external-connection-point-ref: haproxy_mgmt

mgmt-interface: true

...

vdu-configuration:

initial-config-primitive:

...

juju:

charm: testmetrics

metrics:

- name: load

...

monitoring-param:

- id: "haproxy_load"

name: "haproxy_load"

aggregation-type: AVERAGE

vdu-metric:

vdu-ref: "haproxy_vdu"

vdu-metric-name-ref: "load"

• VDU Metric Collection through VCA

metrics “name” corresponds to a predefined metric name at the proxy charm

© ETSI 2019

Model review - Sample VNFD

vnfd:

...

mgmt-interface:

cp: haproxy_mgmt

vnf-configuration:

initial-config-primitive:

...

juju:

charm: testmetrics

metrics:

- name: users

...

monitoring-param:

- id: "haproxy_users"

name: "haproxy_users"

aggregation-type: AVERAGE

vnf-metric:

vnf-metric-name-ref: "users"

• VNF Metric Collection through VCA

metrics “name” corresponds to a predefined metric name at the proxy charm

© ETSI 2019

Proxy Charm metrics layer

metrics:

users:

type: gauge

description: "# of users"

command: who|wc -l

load:

type: gauge

description: "5 minute load average"

command: cat /proc/loadavg |awk '{print $1}'

• Sample of ‘metrics.yaml’ file (root of charm folder)

© ETSI 2019

Metrics collection in action

Walkthrough Example (VIM Metrics)

1. Download and review descriptors from here:

hackfest_autoscale_vimmetric_nsd

hackfest_autoscale_vimmetric_vnfd

2. Onboard them!

3. Make sure the ‘public’ network maps to a network your browser can reach, and ‘mgmt’ network is
not mapped to a VIM network. Your VIM should have Ceilometer/Gnocchi installed.

4. Make sure you MON container matches the metrics granularity of the underlying VIM

docker service update --env-add OS_DEFAULT_GRANULARITY=60 osm_mon

4. Launch the NS, you will have a LB (HA Proxy) and a Web server (Apache).

5. Visit the load balancer IP Address with your browser

https://osm-download.etsi.org/ftp/osm-4.0-four/4th-hackfest/packages/webserver_vimmetric_autoscale_nsd.tar.gz
https://osm-download.etsi.org/ftp/osm-4.0-four/4th-hackfest/packages/webserver_vimmetric_autoscale_vnfd.tar.gz

© ETSI 2019

Metrics collection in action

Walkthrough Example (VIM Metrics)

6. After a couple of minutes, visit the Prometheus TSDB GUI at OSM’s IP address, port
9091.

7. Validate that MON exporter “target” is properly connected at Status/Targets

8. Back in ‘Graph’, type ‘osm_cpu_utilization’ or ‘osm_average_memory_utilization’
and see if metrics are already there.

© ETSI 2019

Metrics collection in action

Walkthrough Example (VIM Metrics)

9. Metrics should appear like this:

© ETSI 2019

Metrics collection in action

Walkthrough Example (VIM Metrics)

10. Now let’s add the optional Grafana component to see metrics in a friendlier way

Installing Grafana

./install_osm.sh -o pm_stack

© ETSI 2019

Metrics collection in action

Walkthrough Example (VIM Metrics)

11. You should be able to visit Grafana at the OSM IP address, port 3000
(admin/admin)

12. There’s a default sample dashboard at ‘Manage → Dashboards’ (to the left), that
will show some predefined graphs connected to Prometheus TSDB

© ETSI 2019

Metrics collection in action

Walkthrough Example (VDU Metrics from VCA)

1. Download and review descriptors from here:

hackfest_autoscale_vnfmet_nsd

hackfest_autoscale_vnfmet_vnfd

2. Onboard them!

3. Make sure the ‘vim-network-name’ of the management network points to a
“PUBLIC” network that your OSM instance can reach.

https://osm-download.etsi.org/ftp/osm-4.0-four/4th-hackfest/packages/ubuntuvm_vnfvdumetric_autoscale_nsd.tar.gz
https://osm-download.etsi.org/ftp/osm-4.0-four/4th-hackfest/packages/ubuntuvm_vnfvdumetric_autoscale_vnfd.tar.gz

© ETSI 2019

Metrics collection in action

Walkthrough Example (VDU Metrics from VCA)

6. You can visit the ‘juju status’ to see if the ‘metrics proxy charm’ is being built:

© ETSI 2019

Metrics collection in action

Walkthrough Example (VDU Metrics from VCA)

7. After around five minutes, you will see metrics at ‘juju metrics <name-of-the-
application>

© ETSI 2019

Metrics collection in action

Walkthrough Example (VDU Metrics from VCA)

8. Finally, visit the Prometheus TSDB GUI at OSM’s IP address, port 9091. In ‘Graph’,
type 'osm_load’ or ‘osm_users’ and see if metrics are already there.

You can also see the metrics at Grafana.

© ETSI 2019

Metrics collection in action

Walkthrough Example (VDU Metrics from VCA)

9. Access with SSH to the VNF (ubuntu/osm2018) and execute ‘yes > /dev/null &’. You
should see users and load metrics changing in the next collection interval (5mins).

© ETSI 2019

Fault Management
- Docker logging & ‘POL’ Component -

21

© ETSI 2019

FM – What’s available in Release FIVE?

KAFKA BUS

MON
module

POL
module

(2) POL creates alarms through MON (3) MON configures the alarm locally and starts
its evaluation process (by default every 30

seconds)

OPTIONAL tools

NBI

(1) client includes thresholds
(and actions) at descriptor

(4) When a metric threshold is
crossed, MON puts a notification in
the bus

OSM N2VC

© ETSI 2019

Main Features

• Logging

• docker containers send their logs to stdout.

• They can be checked on the fly using:

• docker logs osm_mon.1…

• docker logs osm_lcm.1…

• They can also be found at: /var/lib/containers/[container-id]/[container-id].json.log

• VCA logs

• Run ‘juju debug-log’ from the host

© ETSI 2019

Main Features

•Alarming

• As of Release FIVE, MON includes a new module called 'mon-evaluator'. The only use case
supported today by this module is the configuration of local alarms and evaluation of
thresholds related to metrics, for the Policy Manager module (POL) to take actions such as
auto-scaling (next chapter)

• Whenever a threshold is crossed and an alarm is triggered, the notification is generated by
MON and put in the Kafka bus so other components can consume them. This event is today
logged by both MON (generates notification) and POL (consumes notification, for its auto-
scaling action)

© ETSI 2019

FM Experimental Features

• We can enable a “EBK” stack to visualize logs and metrics (Elasticsearch, Beats, Kibana)

• Filebeats collects logs from all docker containers

• Metricbeats collects metrics from the host, containers and applications, through modules.

• Elasticsearch organizes information and provides a way to filter and further process it.

• Kibana provides a way for visualizing information and building dashboards.

© ETSI 2019

• You can enable the EBK stack by using:

• After it’s up, visit it with your browser with the OSM IP, port 5601

• Import sample dashboards using this file: https://osm-download.etsi.org/ftp/osm-4.0-
four/4th-hackfest/other/osm_elastic_dashboards.json (Management → Saved objects →
Import)

• Go to ‘Discover’ and you will be asked to define one of the ‘beats’ as default ‘index
pattern’, do so by selecting ‘filebeat-*’ and clicking

./install_osm.sh -o elk_stack

FM Experimental Features

https://osm-download.etsi.org/ftp/osm-4.0-four/4th-hackfest/other/osm_kibana_dashboards.json

© ETSI 2019

• All metrics and logging activity will appear at Kibana.

• Navigate the sample OSM dashboards and provide feedback!

FM Experimental Features

© ETSI 2019

Policy Management
- ‘POL’ Component -

28

© ETSI 2019

PM – What’s available in Release FIVE?

KAFKA BUS

MON
module

POL
module

(2) POL creates alarms through MON

NBI
(1) client includes thresholds
and SCALING actions at VNF
descriptor

(5) SCALING actions are triggered based on the received
notification

(3) MON configures the alarm locally and starts its
evaluation process (by default every 30 seconds)

(4) When a metric threshold is crossed,
MON puts a notification in the bus

OSM N2VC

LCM
module

(6) LCM receives the scaling
request and proceeds with

instantiation

© ETSI 2019

Main Features

•Autoscaling

• Scaling descriptors can be included and be tied to automatic reaction to VIM/VNF metric
thresholds.

• An internal alarm manager is supported, so that both VIM and VNF metrics can trigger
threshold-violation alarms and scaling actions.

© ETSI 2019

Model review - Sample VNFD

scaling-group-descriptor:

- name: "apache_vdu_autoscale"

min-instance-count: 0

max-instance-count: 10

scaling-policy:

- name: "apache_cpu_util_above_threshold"

scaling-type: "automatic"

threshold-time: 10

cooldown-time: 120

scaling-criteria:

- name: "apache_cpu_util_above_threshold"

scale-in-threshold: 20

scale-in-relational-operation: "LT"

scale-out-threshold: 80

scale-out-relational-operation: "GT"

vnf-monitoring-param-ref: "apache_vnf_cpu_util"

•VNF Scaling Descriptor (automatic, based on metrics)

vnf-monitoring-param-ref corresponds to a predefined ‘monitoring param’

© ETSI 2019

Model review - Sample VNFD

• Please note that scaling actions can also be triggered manually as long as there is a
scaling descriptor of type ‘manual’

• The VNFD would look like this:

scaling-group-descriptor:

- name: "apache_vdu_manualscale"

min-instance-count: 0

max-instance-count: 10

scaling-policy:

- name: "apache_cpu_util_manual"

scaling-type: "manual"

threshold-time: 10

cooldown-time: 120

© ETSI 2019

Model review - Sample VNFD

• The API call for that is:

• URL: POST to nslcm/v1/ns_instances/{{nsInstanceId}}/scale

• Body

{"scaleType": "SCALE_VNF",

"scaleVnfData":

{"scaleVnfType": "SCALE_OUT",

"scaleByStepData": {

"scaling-group-descriptor":
"apache_vdu_manualscale",

"member-vnf-index": "1"

}}}

© ETSI 2019

Walkthrough Example

1. Launch a ubuntu machine with a m1-small flavor to use it as a client for stressing
our HAProxy+Apache VNF locally. Instiatiate it at the PUBLIC network.

Make sure you will be able to access it, either by using your ssh-key or the following
configuration script:

#cloud-config
hostname: ubuntu_client
password: osm2018
chpasswd: { expire: False }
ssh_pwauth: True

2. Install Apache-Bench: sudo apt-install apache2-utils

Autoscaling in action

© ETSI 2019

Walkthrough Example

2. From this client, run a stress test towards your load balancer’s IP address:

ab -n 5000000 -c 2 http://[HA-Proxy-IP]/test.php

3. Watch the policy manager logs to detect for autoscaling instructions. CPU should
start going up in a minute, validate that at the Grafana Dashboard.

Autoscaling in action

© ETSI 2019

Walkthrough Example

4. Instances of Apache Web Server should start appearing (up to 2 or 3 before it
starts load balancing traffic accordingly), validate this at the OpenStack Network
Topology and visiting the HAProxy IP address.

5. Finally, test scale-in by stopping the traffic and waiting for a couple of minutes.

Autoscaling in action

© ETSI 2019

Find us at:
osm.etsi.org

osm.etsi.org/wikipub

