
Dataplane Broker (DPB)

Steven Simpson, Arsham Farshad, Paul McCherry, Abubakr “Ali” Magzoub

Problem statement

● Multi-site (multi-VIM)
– Each VNF assigned to a

site

– Some VLs split across sites

– WIM responsible for inter-
site connectivity

● Dataplane Broker
(DPB)
– Can act as WIM

VNF

VNF VNF

Site 1

Site 2

Wide-area L2 connections

● VLAN endpoints
– Functional isolation of VLs

● Multipoint
– NSes can be split over 2+

sites

● Bandwidth guarantees
– Non-functional isolation

– Traffic from one NS
shouldn’t be able to
drown out another

– Asymmetric

● Multiswitch
– Plugin framework for base

‘fabric’ layer

– Heterogeneous physical
network

● Corsa DP2000 series

● Generic OpenFlow

● Scalability
– Hierarchical abstraction

– Not looking for optimal
solution

● OpenSource

Network abstraction

● Named terminals
– Associated with sliced resources

at specific locations, e.g.,
lancaster-openstack, paris-
vpngw, berlin-ofx

● Numerically labeled circuits
– Distinguishes services occupying

same terminal

– Maps to encapsulation
technology (e.g., VLAN ids)

● Services
– Connect 2+ circuits

– Bandwidth guarantees

site1-
ofx

site1-
opst

site2-
ofx

site2-
opst

site3-
ofx

site3-
opst

2010

961

91
435 961

logical
network

terminals

services

circuit
labels

● Logical switch
– Logical network subtype

– Maps directly to physical switch

– Uses adaptor to map to fabric
technology

Aggregator

● Control of inferior
networks
– ‘Trunks’ connect ‘internal’

terminals of inferiors

– Own terminals map to
‘external’ terminals of
inferiors

– Aggregator manages
capacity of its own trunks

– Aggregator service maps
to set of inferior services

● Same northbound interface
– Hierarchies could be built

– Inferiors are either more
aggregators, or ‘logical switches’

– Leaves are always switches

site2-
opst

site1 site2

91

961

961

91 73 73

site2 site1

opst opst

site1-
opst

synonymities

trunk

aggregator

inferior
network

inferior
network

Fabric adaptation

● OpenFlow adaptor
– Uses VLAN OF operations

for VLAN switching

– Some metering applied to
implement QoS

● OF1.5

– Custom Ryu controller app
implements multiple
isolated learning switches
in one physical switch

● Fabric adaptors are plugins for
specific technologies
– Different adaptor usable by each logical

switch

– Network heterogeneity

– No persistent state

REST

Fabric

OpenFlow switch

Ryutupleslicer.py

VLANCircuitFabric.java

OpenFlow

Fabric adaptation

● Corsa adaptor
– Uses custom Ryu app to

switch between internal
ports of VFC

– Uses switch management
REST API to attach VFC
ports to physical ports and
VLANs

● (De-)tagging handled by
attachments, not by
OpenFlow

● Shaping applied to
attachments

– QoS not implemented by
OpenFlow

REST

Fabric

Corsa DP2000

VFC

Ryuportslicer.py

1 2

PortSlicedVFCFabric.java

mgmt
OpenFlow

Corsa
REST

physical
port

tunnel
attachment

virtual
forwarding

context

7391
VLAN id

Aggregate bandwidths

Aggregate bandwidths

Aggregate bandwidths

Sub-optimal results

Sub-optimal results

Future of DPB

● Service modification
– Pretend that resources

consumed by current
configuration are available
for new

● Bandwidth matrix
– For better expression of

(say) E-TREE

● OVSDB as fabric
– Similar to Corsa

architecture

● Multi-segment
– Establish all disjoint

segments or fail

● Alternative metrics for
path computation
– Latency, reliability, …

● Multitenancy
– In the control plane

– Better isolation of one
user’s services from other
users’ control

Acknowledgements

OSM multi-VIM issues

● IP pool splitting
– OSM must co-ordinate IP

configuration as it splits VL,
not after

– Same subnet; disjoint IP pools

– Our work-around: block DHCP

– Watch out for connected
internal and external VLDs

– What about switch-like and
router-like behaviour across
interfaces?

– Holistic solution to related
issues?

● Pre-existing networks
– (including management)

– Don’t connect them during ns-
create!

– Assume they are already
connected

– Or deal with:
● Modification of existing services

● Merging of two services into one

● Surprise unrelated subnets

– Detection:
● vim-network-name expressed or

implied; and

● profile unspecified

Multi-tenant multi-VIM management networks

● Per-tenant VIM
configurations
– Distinct VIM tenants and

default management
network names

– Per-tenant isolation of
management networks

– Overlapping subnets

– Juju client needs distinct
netns context to access
multiple simultaneously

● VPN in?

● Tool to set up multi-VIM
management network?
– Admin credentials of OSM and all

requested VIMs

– Create VIM projects at each site
● Create VIM network

– Create VPN gateway(s)
● vpnmgr

– Gather endpoints and connect with
broker

– Create OSM tenant
● Populate with VIMs’ project credentials and

local network names

● Provide Juju with VPN credentials

● Or do it through OSM?
– Need VPN gateways as VNFs

– Need VLD pinning (or dummy VNFs)

Multi-VIM IP pool split

● A VNF could consist of
multiple and variable
VDUs (scaling)

● VL(D) profiles:
– Subnet (e.g.,

192.168.10/24)

– DHCP range (e.g., 30-40)

– Some defined by
VNFD/NSD providers

– Rest defined at
deployment

VNF

VNF VNF

VL VL

VL

Multi-VIM IP pool split

● Express as NSD

● Deploy it
– Assign VNFs to different

VIMs

● OSM 5/6
implementation
– Leads to WIM interaction

– No IP address co-
ordination

VNF

VNF VNF

Site 1

Site 2

Multi-VIM IP pool split

● No VNF spans two or more
sites

● No internal VL spans sites

● Some external VLs span sites
– Some may span more than two

– A split VL will need representation at
each site

● VL profiles must be defined
before splitting
– Representations of the same VL at

different sites must be compatible

– Representations of different VLs at
different sites must be distinct

– To permit L2 inter-site connectivity

VNF

VNF VNF

Site 1

Site 2

192.168.10/24 192.168.20/24
(20-39)

10.30.67/24
(20-39)

Multi-VIM IP pool split

● Each OpenStack site
provides a DHCP agent for
each VL it represents
– One address is used as the

default gateway, DNS server and
DHCP server

– Agent only responds to DHCP
requests of MACs known locally
to use that network

– No awareness of DHCP at other
site

– DHCP ranges for same VL at each
site must not overlap!

– DHCP ranges must anticipate
scaling

VNF

VNF VNF

Site 1

Site 2

192.168.10/24 192.168.20/24
(30-39)

10.30.67/24
(20-29)

192.168.20/24
(20-29)

10.30.67/24
(30-39)

Multi-VIM IP pool split

● Inter-site connectivity
– Get VLAN tags of VIM

representations of multi-site VLs
● 42 & 57

● 69 & 60

– Add site identification as
context

● Site 1.42 & Site 2.57

● Site 1.69 & Site 2.60

– Estimate bandwidth at each end
point

● Site 1.42 (10M) & Site 2.57 (10M)

● Site 1.69 (10M) & Site 2.60 (10M)

– Supply to WIM

VNF

VNF VNF

Site 1

Site 2

192.168.10/24 192.168.20/24
(30-39)

10.30.67/24
(20-29)

192.168.20/24
(20-29)

10.30.67/24
(30-39)

42 57

69 60

Multi-VIM IP pool split

● Site 1.42 (10M) & Site
2.57 (10M)

● Site 1.69 (10M) & Site
2.60 (10M)

● Broadcasts are visible
across both sites
– ARPs work

– DHCP requests seen by
both agents, but only one
responds

VNF

VNF VNF

Site 1

Site 2

192.168.10/24 192.168.20/24
(30-39)

10.30.67/24
(20-29)

192.168.20/24
(20-29)

10.30.67/24
(30-39)

42 57

69 60

New management networks through OSM

● Define a VLD
– Include a VPN gateway as

a VNF

● Deploy across sites
– But only VNFs can be

assigned to VIMs

● Create tenant-specific
VIMs using new
network as default
management

VPN
gateway

Site 1 Site 2

mgmt

public

VPN
gateway

mgmt

public

Site 3 Site 4

? ? ?

