Easily Setting up 4G/5G Testbeds with OpenAirInterface using OSM

Thomas Dreibholz, dreibh@simula.no

9th OSM Hackfest, Madrid online
March 12, 2020
Table of Contents

• OpenAirInterface and Our Goal
• Basic Testbed Setup
• The SimulaMet EPC VNF
• Juju Configuration and Challenges
• Managing Builds
• Demo
OpenAirInterface (OAI)

- OpenAirInterface (OAI):
 - Open Source software for EPC and eNodeB (i.e. packet core and base stations)
 - Details: https://www.openairinterface.org
 - 4G LTE available, 5G under development
 - Ongoing work, with many different Git branches

- Idea:
 - Manage OAI setups in OSM (at least, the EPC part)
 - Automatic setup and deployment
 - Easy to add additional features (e.g. Mobile Edge Computing components)
 - Open Source, of course! → https://github.com/simula/5gvinni-oai-ns
Setting Up a 4G/5G Testbed

- **Hardware:**
 - User Equipment (modems, smartphones, etc.)
 - Programmable sim cards
 - Software-Defined Radio boards

- For the rest (eNodeBs, EPC):
 - OpenAirInterface Open Source software
 - Running on regular Linux PCs
 - **But: difficult to install and maintain!**
Our Goal: An OpenAirInterface VNF

- Main purpose: testbed setups for research and development
- OAI EPC as VNF
 - Easy to use, EPC should (hopefully) work “out of the box”
 - Build of OAI software inside VMs, according to specified Git repositories and commits → get exactly the desired installation
- NSs using the VNF and possibly other VNFs
 - Example 1: add Mobile Edge Computing services to EPC
 - Example 2: get basic EPC to test extended eNodeB software
 - ...

12 March 2020
Easily Setting up 4G/5G Testbeds with OpenAirInterface using OSM
Basic Testbed Setup

OpenSource MANO

Juju containers
- MME
- HSS
- SPGW-C
- SPGW-U

UEs eNodeBs

S1-C S1-U SGi

MME S6a S11 HSS

sysstat

SPGW-U EPC SPGW-C

sysstat SXab

SimulaMet EPC NS

The Internet

PDN

OpenStack Cluster
What is needed for the VNF?

- Base VDU image
- The VNF itself
- Juju Charms to configure the components
- Management of the build process
Base VDU Image

- **VDU image goals:**
 - Full-featured base VDU image, including development and debug tools
 - Different versions of Ubuntu LTS (Xenial, Bionic, Focal)
 - Up-to-date (i.e. all updates installed)

- **Preseeding script:**
 - Fully automatic Ubuntu installation from scratch (using virt-install)
 - Preseed configuration to include all necessary base packages
 - "late_command": mainly work-arounds for bugs in the Ubuntu installer
 - add PPAs, update keyboard layout, ensure updates are installed
The SimulaMet EPC VNF

HSS: Home Subscriber Server
MME: Mobile Management Entity
SPGW-C:
Control Plane of the Packet Data Network Gateway
SPGW-U:
User Plane of the Packet Data Network Gateway
VNF Parameters Example

- # ====== HSS ===
 hss_git_repository: 'https://github.com/OPENAIRINTERFACE/openair-cn.git'
 hss_git_commit: 'dreibh/cassandra-build-fix-17feb2020'
 hss_S6a_address: '172.16.6.129'
 network_realm: 'simula.nornet'
 network_k: '449C4B91AEACD0ACE182CF3A5A72BFA1'
 network_op: '1006020F0A478BF6B699F15C062E42B3'
 network_imsi_first: '24288888000000'
 network_msisdn_first: '24288888000000'
 network_users: '1024'

- # ====== MME ===
 mme_git_repository: 'https://github.com/OPENAIRINTERFACE/openair-cn.git'
 mme_git_commit: '2019.w45'
 mme_S1C_ipv4_interface: '192.168.247.102/24'
 mme_S1C_ipv4_gateway: '0.0.0.0'
 mme_S1C_ipv6_interface: ''
 mme_S1C_ipv6_gateway: ''
 mme_S11_ipv4_interface: '172.16.1.102/24'
 mme_S6a_address: '172.16.6.2'
 network_mcc: '242'
 network_mnc: '88'

- ...
Configuration with Juju

• Day-0/1: For each VDU (EPC component, i.e. HSS, MME, SPGW-C, SPGW-U):
 - Install necessary additional packages (depends on component)
 - Set up network configuration
 - Clone component sources (Git repository and commit)
 - Build the sources
 - Create/update component’s configuration files
 - Write systemd unit file (for “sudo service <component> start|stop|restart”)
 - Start the component

• Day-2: actions to start/stop/reconfigure components
Juju Proxy Charm Challenges

- charms.sshproxy._run(COMMAND STRING)
- String is processed in Python, then it is processed by ssh/bash shell of VDU
 - Escaping/double escaping required:
 - $ ⇔ \$
 - \ ⇔ \\
 - " ⇔ \\\\\\n - Result: writing charm commands gets ugly and error prone
 - Wishlist: automatic escaping!
- Juju errors passed to OSM are usually not very helpful
 - Something went wrong, but not saying what went wrong
 - Wishlist: improved error reporting!
Managing VNFD/NSD Builds

- Multiple manual steps to generate and deploy VNFs and NSs
 - Strictly verify all YAML files with yamllint (useful, to avoid problems!)
 - Copy Charm files to VNFDs and build Charms (charm build ...)
 - Verify descriptor(s) and generate VNFD package(s) (validate_descriptor.py, generate_descriptor_pkg.sh)
 - Verify descriptor(s) and generate NSD package(s)

- Initial approach: write a Makefile

- Better approach:
 - Use Git for source management ⇒ information about all relevant source files
 - Use CMake to write Makefiles and take care of dependencies!
Demo
Sources

- Get the sources here: https://github.com/simula/5gvinni-oai-ns
 - Open Source, GPL-licensed
 - README: how to set up a testbed
 - images/: VDU preseeded image build script
 - juju/: The Juju Charms used by the VNF
 - SimulaMet-OAI-EPC_vnfd/: VNF descriptor
 - SimulaMet-OAI-EPC_nsd/: NS descriptor for simple example
Any Questions?

Thomas Dreibholz
dreibh@simula.no
https://www.simula.no/people/dreibh