Building a Multi-VDU VNF
Let’s start with the VNF
NS diagram

NS: hackfest_magma-agw-enb_nsd

VNF: hackfest_magma-agw-enb_vnfd

CP: agw-mgmt
CP: srsLTE-mgmt
CP: agw-sgi

VL: mgmt
VL: sgi
VNF diagram

VNF: hackfest_magma-agw-enb_vnfd

VDU: mgmtVM
- Image name: magma101_hf9
- VM Flavor: 1 CPU, 4 GB RAM, 50 GB disk
- Interfaces:
 - eth0: VIRTIO / SR-IOV
 - eth1: VIRTIO
 - eth2: VIRTIO

VDU: dataVM
- Image name: srsLTEzmqRF_hf9
- VM Flavor: 4 CPU, 6 GB RAM, 100 GB disk
- Interfaces:
 - eth0: VIRTIO
 - eth1: VIRTIO / SR-IOV

External CP: agw-mgmt
External CP: agw-sgi
External CP: srsLTE-mgmt

VL: internalS1

ICP: agw-s1
ICP: srsLTE-s1

192.168.100.254

192.168.100.10

© ETSI 2020
Building a Multi-VDU VNF Package from scratch

• We can use the graphical composer for the VNFD, then download the package to add other artifacts, but it will be faster through the CLI.
 • Compose a new VNF
 • Create new Package
Creating a new VNF Package from CLI

- Use the command line to create the complete structure of the package, modify as desired with an editor.

```
oms package-create --base-directory ~/magma --image magma101_hf9 --vcpu 1
--memory 4096 --storage 50 --interfaces 2 --vendor OSM vnf
hackfest_magma-agw-enb
```

- The final contents we need for this section are place in the following folder:

 /home/hackfest/base_packages/01-multivdu/hackfest_magma-agw-enb_vnfd/hackfest_magma-agw-enb_vnfd.yaml
Creating a new VNF Package from CLI

• Two options:
 1. View the desired contents and replace your `hackfest_magma-agw-enb_vnfd.yaml` file, section by section.

 cat
 /home/hackfest/base_packages/01-multivdu/hackfest_magma-agw-enb_vnfd/hackfest_magma-agw-enb_vnfd.yaml

 2. [Faster] Copy all the contents from the base_packages directory into your VNF folder

 cp -a /home/hackfest/base_packages/01-multivdu/hackfest_magma-agw-enb_vnfd/*
 ~/magma/hackfest_magma-agw-enb_vnf/
In our first VDU, interfaces section, we will make sure we have our internal “s1” interface first.

```json
vdus:
  - id: magma-agw-vdu
    ...  
    interface:
      - name: eth0
        type: INTERNAL
        position: 1
      virtual-interface:
        type: PARAVIRT
        internal-connection-point-ref: agw-s1
      - name: eth1
        type: EXTERNAL
        position: 2
      virtual-interface:
        type: PARAVIRT
        external-connection-point-ref: agw-sgi
```

```json
- name: eth2
  type: EXTERNAL
  position: 3
  virtual-interface:
    type: PARAVIRT
    external-connection-point-ref: agw-mgmt
  internal-connection-point:
    - id: agw-s1
      name: agw-s1
      short-name: agw-s1
      port-security-enabled: false
```
Creating a new VNF Package from CLI

- The management interface for our VNF will be the agw-mgmt CP.

```
mgmt-interface:
    cp: agw-mgmt
```

- Our Magma AGW VDU needs some information to be passed via a cloud-init file, which we will review later.

```
vdu:
    - id: magma-agw-vdu
      ...
    cloud-init-file: magmaagw_init
```
Creating a new VNF Package from CLI

- A second VDU is added, for the srsLTE eNodeB/UE emulator

```json
vdu:
...
- id: srsLTE-vdu
  name: srsLTE-vdu
  description: srsLTE-vdu
  count: 1
  cloud-init-file: srslte_init
vm-flavor:
  vcpu-count: 4
  memory-mb: 6144
  storage-gb: 100
image: 'srsLTEzmqRF_hf9'
```

```json
interface:
- name: eth0
  type: EXTERNAL
  virtual-interface:
    type: PARAVIRT
  external-connection-point-ref: srsLTE-mgmt
  mgmt-interface: true
- name: eth1
  type: INTERNAL
  virtual-interface:
    type: PARAVIRT
  internal-connection-point-ref: srsLTE-s1
internal-connection-point:
- id: srsLTE-s1
  name: srsLTE-s1
  short-name: srsLTE-s1
```
Creating a new VNF Package from CLI

The internal VLD, for the S1 network, must be defined in the VNFD. An IP Profile is used to force a specific IP addressing.

```json
internal-vld:
  - id: internalS1
    name: internalS1
    short-name: internalS1
    type: ELAN
    ip-profile-ref: internalS1
  internal-connection-point:
    - id-ref: agw-s1
      ip-address: 192.168.100.254
    - id-ref: srsLTE-s1
      ip-address: 192.168.100.10
  ip-profiles:
    - name: internalS1
      description: S1 test network
      ip-profile-params:
        ip-version: ipv4
        subnet-address: 192.168.100.0/24
        dhcp-params:
          enabled: true
```
Finally, the external connection points that the VNF will expose, are defined.

```
connection-point:
  - name: agw-mgmt
  - name: agw-sgi
  - name: srsLTE-mgmt
```

We are exposing the two management ports of both VDUs, and the SGi interface, to the Network Service.
Building a NS Package from scratch

We can use the graphical composer for the NSD, then download the package to add other artifacts, but it will be faster through the CLI.

- Compose a new NS
- Create new Package
Creating a new NS Package from CLI

• Use the command line to create the complete structure of the package, modify as desired with an editor.

```
$ osm package-create --base-directory ~/magma --vendor OSM ns hackfest_magma-agw-enb
```

• The final contents we need for this section are placed in the following folder:

```
/home/hackfest/base_packages/01-multivdu/hackfest_magma-agw-enb_nsd/hackfest_magma-agw-enb_nsd.yaml
```
Creating a new NS Package from CLI

- Two options:
 1. View the desired contents and replace your `hackfest_magma-agw-enb_nsd.yaml` file, section by section.

     ```
     cat 
     /home/hackfest/base_packages/01-multivdu/hackfest_magma-agw-enb_nsd/hackfest_magma-agw-enb_nsd.yaml
     ```
 2. [Faster] Copy all the contents from the `base_packages` directory into your VNF folder

     ```
     cp -a /home/hackfest/base_packages/01-multivdu/hackfest_magma-agw-enb_nsd/* 
     ~/magma/hackfest_magma-agw-enb_ns/
     ```
Creating a new NS Package from CLI

- The first important part is the ‘constituent-vnfd’ section, which will specify which VNFs form our NS.

```json
constituent-vnfd:
- member-vnf-index: 'MagmaAGW+srsLTE'
  vnfd-id-ref: hackfest_magma-agw-enb_vnfd
```
• Our management VLD will connect all the external management CPs exposed at our VNF

```yaml
vld:
- id: mgmt
  name: mgmt
  short-name: mgmt
  type: ELAN
  mgmt-network: true
  vnfd-connection-point-ref:
    - member-vnf-index-ref: 'MagmaAGW+srsLTE'
      vnfd-id-ref: hackfest_magma-agw-enb_vnfd
      vnfd-connection-point-ref: agw-mgmt
    - member-vnf-index-ref: 'MagmaAGW+srsLTE'
      vnfd-id-ref: hackfest_magma-agw-enb_vnfd
      vnfd-connection-point-ref: srsLTE-mgmt
```
Finally, our SGi VLD will connect the Magma AGW VDU to an existing network called “sgi” in our VIM.

```
vld:
...
- id: sgi
  name: sgi
  short-name: sgi
  type: ELAN
  mgmt-network: false
  vim-network-name: sgi
  vnfd-connection-point-ref:
    - member-vnf-index-ref: 'MagmaAGW+srsLTE'
    vnfd-id-ref: hackfest_magma-agw-enb_vnfd
    vnfd-connection-point-ref: agw-sgi
```
Automating Day-0 configuration through cloud-init
What is cloud-init and what can it be used for?

- It is a Linux package used to automate initial configuration of a VM

- VM requirements:
 - Cloud-init package
 - Cloud-init configuration (data source) via /etc/cloud/cloud.cfg
 - Config drive
 - Openstack metadata server
 - ...

- What can be done?
 - Setting a default locale
 - Setting an instance hostname
 - Generating instance SSH private keys
 - Adding SSH keys to a user’s .ssh/authorized_keys so they can log in
 - Setting up ephemeral mount points
 - Configuring network devices
 - Adding users and groups
 - Adding files

- Cloud-init is available in Linux VMs and might be supported in other OS

- Not all VIMs support cloud-init via a metadata server
Let's explore the Cloud-init files

```bash
~/magma/hackfest_magma-agw-enb_vnf/cloud_init/magmaagw_init
#cloud-config
runmd:
    # deleting default mgmt route to Internet
    - route delete -net 0.0.0.0/0 gw 172.21.251.254
    # adding specific ETSI HIVE mgmt segments through mgmt network
    - route add -net 10.100.0.0/16 gw 172.21.251.254
    - route add -net 10.101.0.0/16 172.21.251.254
    - route add -net 172.21.0.0/16 gw 172.21.251.254
    - route add -net 172.22.0.0/16 gw 172.21.251.254
    - route add -net 192.168.170.0/24 gw 172.21.251.254
    # adding specific ORCH_IP through mgmt network
    - route add -host {{ orch_ip }}/32 gw 172.21.251.254
    # adding new default route to VyOS PNF
    - route add -net 0.0.0.0/0 gw 192.168.239.7
    # adding new specific routes to reach MetalLB ranges (Squid and other svcs) through VyOS PNF
    - route add -net 172.21.250.0/24 gw 192.168.239.7
    - route add -net 172.21.251.0/24 gw 192.168.239.7
```

- From the AGW, we are removing the default route and pointing it towards the data plane interface (router at the SGI, at 192.168.239.7)
- We are also passing a route towards the Magma Orc8r, through the management port, the IP is parametrized!
Let's explore the Cloud-init files

```
~/magma/hackfest_magma-agw-enb_vnf/cloud_init/srslte_init

#cloud-config
password: osm2020
chpasswd: { expire: False }
ssh_pwauth: True
runcmd:
    - route add -net 10.0.0.0/8 gw 172.21.251.254
    - route add -net 172.21.0.0/16 gw 172.21.251.254
    - route add -net 172.22.0.0/16 gw 172.21.251.254
    - route add -net 192.168.170.0/24 gw 172.21.251.254
```

- From the srsLTE emulator, we are adding some specific management routes towards the management network, as we will remove the default route in a later stage (Day-1 primitive).
- We are also setting a fixed password, ‘osm2020’, for the default ‘ubuntu’ user.
Packaging and instantiation
Building, validating and uploading packages

• Once finished, you can build and upload the NS/VNF Package to OSM with the following commands.

```
osm nfpkg-create ~/magma/hackfest_magma-agw-enb_vnf
osm nspkg-create ~/magma/hackfest_magma-agw-enb_ns
```

• This single command will:
 • **Validate** the package according to the Information Model.
 • **Build** the package.
 • **Upload** the package to OSM.

```
osm nfpkg-list
osm nspkg-list
```
Instantiation parameters

• Prepare any parameter you want to pass during instantiation.

In this case, we will prepare a ‘params.yaml’ file that will pass some parameters we will need during the following tests.

```yaml
additionalParamsForVnf:
- member-vnf-index: 'MagmaAGW+srsLTE'
  additionalParams:
    agw_id: 'agw_01'
    agw_name: 'AGW1'
    orch_ip: '172.21.251.x'  ## change this to your assigned address
    orch_net: 'osmnet'
```
Launch your first instance

• With your NS and VNF package ready, you can proceed to instantiation.

```bash
osm ns-create --ns_name magmaAGW_x --nsd_name hackfest_magma-agw-enb_nsd --vim_account etsi-openstack-x --config_file params.yaml
```