Placement optimization for our Network Services
Lars-Göran Magnusson (Arctos Labs)
Introduction to Placement Optimization

Note: Placement is targeted for next OSM Release
What do we mean by Placement Optimization?

- **Placement in context of OSM** is the process of deciding **which VNF goes into which VIM**.

- **Optimal** is subject to:
 - Cost of compute in VIMs
 - Cost of links for NS interworking
 - Constraints in NS interworking (Latency, Jitter) – if there are any

- Placement feature makes this process **Automatic & Optimal**.
The Optimization Process

- Placement function
 - Will consider all VIM’s available to the user
 - Will make sure constraints are met – if there are any
 - Will optimize Cost (the Criteria)
 - I.e. select the option that fulfills constraints at the lowest possible cost
- Modeled as a constraints optimization problem

Computation of optimal placement of VNFs over VIMs by matching NS specific requirements to infrastructure availability and run-time metrics, while considering cost of compute/network.
Placement optimization examples

1. **Cost** optimization only

2. **Cost** optimization with Latency constraint

3. **Utilization** optimization with Latency constraint

4. **Cost** optimization with Capability constraint

Constraints:
- Nothing
- Latency / Jitter
- Capability (e.g. CPU / GPU etc)

Criteria:
- Placement
- Cost
- Utilization
- Future
Examples of use cases

UPF supporting Low-latency
Placement of UPF close to customer to achieve latency constraint

Transport optimization (cost) for Application components
Placement of Application components close to the source of data to reduce transport cost/load

Compute cost optimization for slicing
Placement of CN VNF’s at most cost effective compute

Deploy as close as it has to be

Deploy as far away as it can be
VNF Pinning

- Ability to “pin” a VNF to e.g.
 - the VIM with a specific VNF (e.g. P-GW)
 - the VIM with connectivity to a PNF
 - a CPE (customer location)

Example 1:
- VNF#1: Auto
- VNF#2: Auto
- VNF#3: VIM#3

Example 2:
- VNF#1: Auto
- VNF#2: Auto
- VNF#3: Auto

Example 3:
- VNF#1: Auto
- VNF#2: Auto
- VNF#3: Auto

Auto implies there is no VIM specified, this placement is therefore subject to placement optimization

=> this is what Placement is all about – finding out where VNFs should (or must) be deployed in a multi-VIM NFVI
Some different scenarios

- **Scenario a:**
 - VIM#3: Auto
 - VNF#1
 - VNF#2
 - VNF#3
 - Pinning: vld_one_vld
 - Constraints: latency=15

- **Scenario b:**
 - VIM#4: Auto
 - VNF#1
 - VNF#2
 - VNF#3
 - Pinning: vld_two_vld

- **Scenario c:**
 - VIM#4: Auto
 - VNF#1
 - VNF#2
 - VNF#3
 - Pinning: Auto

Topology & Cost

- Global DC VIM#1: Cost: 10, Latency: 30
- Local DC VIM#2: Cost: 20
- CP VIM#3: Cost: 50
- CP VIM#4: Cost: 50

© ETSI 2020
Install and configure PLA in OSM
The PLA component in OSM

• Basic functionality initially

• Automatic placement is optional, invoked by the user at instantiate of Network Service
 - --config '{placement-engine: PLA, placement-constraints: {}, ...}'
 - Constraints given in the instantiation request
 - Will consider placement over the VIMs available to the user

• Interacts with LCM, Common Services

• New component
 - Optional, install with --pla
Configure PLA

- You need two configuration files
 - vnf_price_list.yaml
 - pil_price_list.yaml

- The configuration files are copied to the PLA container using the following commands:
 $ docker cp vnf_price_list.yaml $(docker ps -qf name=osm_pla):/placement/.
 $ docker cp pil_price_list.yaml $(docker ps -qf name=osm_pla):/placement/.

The price list for compute determines the price for each VNF at each VIM. The file (vnf_price_list.yaml) is written in Yaml.

The price list and characteristics for transport links between VIMs (PoP Interconnecting Link – PiL). In current release the price is given per link without any consideration to BW or other QoS parameter. The file (pil_price_list.yaml) is written in Yaml.

Note: In current OSM release the link characteristics are hard coded into this file, in future releases this data should be retrieved from the infrastructure by monitoring mechanisms.

Note: Don’t copy the files as hackfest participant, it’s already done!
Invoke PLA

1. Request Placement Cost Optimization

   ```
   --config '{placement-engine: PLA}'
   ```

2. Request Placement Cost Optimization with pinning of specified VNF

   ```
   --config '{placement-engine: PLA, vnf: [{member-vnf-index: "1", vim_account: OpenStack3}]}'
   ```

3. Request Placement Cost Optimization with VLD Constraints

   ```
   --config '{placement-engine: PLA, placement-constraints: {vld-constraints: [{id: vld_1, link-constraints: {latency: 120, jitter: 20}}, {id: vld_2, link-constraints: {jitter: 20}}]}}'
   ```

4. Combo of 2 and 3

   ```
   ```

Note: GUI is also supported, with or without YAML file
Hands-on: Placement of the Magma AGW + emulator VNF
Launch a 2nd slice

- Create another VIM

The vim name is important, it must match content of the vnf_price_list.yaml file

\texttt{osm vim-create --name etsi-openstack-{\$(HACKFEST-TENANT)}-lowcost --user osm_hackfest_\{\$(HACKFEST-TENANT)} --password osm_hackfest_\{\$(HACKFEST-TENANT)} --auth_url http://172.21.7.5:5000/v3 --tenant osm_hackfest_\{\$(HACKFEST-TENANT)} --account_type openstack --config '{management_network_name: management, dataplane_physical_net: physnet2, microversion: 2.32}'}

--user, --password and --tenant follows your personal settings for the hackfest

Don't forget the additional configuration
Launch a 2nd slice

- Run hfscripts/lunch_nsi_placement.sh

```bash
cd hfscripts/
./launch_nsi_placement.sh

- create PDU

- params_slices2.yaml

  netslice-subnet:
  - id: slice_hackfest_nsd_epc
    placement-engine: PLA
    wimAccountId: False

  additionalParamsForVnf:
  - member-vnf-index: '1'
    additionalParams:
      agw_id: 'agw_101'
      agw_name: 'AGW101'
      orch_ip: '172.21.251.XXX'  ## change this to the MetalLB IP address of your orc8r_proxy service.
      orch_net: 'osmnet'

  - id: slice_hackfest_nsd_epcmgmt
    additionalParamsForVnf:
    - member-vnf-index: 'orc8r'
      additionalParamsForKdu:
      - kdu_name: orc8r
        additionalParams:
          proxyserviceloadBalancerIP: '172.21.251.XXX'  
```

Need another agw_id, agw_name e.g. 101
Launch a 2nd slice

- Check where the vnf was deployed

\texttt{osm vnf-list}

- \texttt{vim_account_id} should correspond to \texttt{etsi-openstack-x-lowcost} for the new slice
- same Magma \texttt{orc8r} as before
- You may configure and send traffic over the new slice

- Clean up: delete the slice

\$ \texttt{osm nsi-delete <nsi_name> or <nsi_id>}

- Clean up: remove parameter file