
Understanding the VCA
Juju is a universal operator lifecycle manager

“How can we manage all these things?”

Configuration
Management

Terraform, Ansible

Declarative
Deployment

Helm

Imperative
Lifecycle
Management

Operators

A ‘Kubernetes operator’ is a container
which drives other containers.

Operators handle container lifecycle complexity

✓ install
✓ configure
✓ upgrade
✓ remove

“Automate all the detail of
running this application on K8s”

An operator is ops code.
A charm is an operator package.

App domain knowledge, distilled into code

Application code is open source.
Why not share the operations code too?

“I found nine operators of Cassandra but none of them
seem very good and I don’t know which one to use”

Writing great operators is hard

⨯ UX / CLI
⨯ Configuration
⨯ Component permutations
⨯ Pod-based operator limitations
⨯ Distributed systems

“How can we improve operators?”

Configuration
Management

Terraform, Ansible

Declarative
Deployment

Helm

Imperative
Lifecycle
Management

Operators

Model-driven
Operators

Juju VCA

A better way to build and use operators

✓ Model-driven operator lifecycle manager (OLM)
✓ Composition and integration of operators
✓ Standardised UX / CLI and configuration
✓ Parameterised async Day 2 operations
✓ Fine-grained sidecar workload control
✓ Python operator framework with Golang OLM
✓ Much, much less YAML, much simpler operator code

But first, a demo!

Kubeflow

Different scenarios

Edge
Example

Data Scientist
Example

Enterprise Training
Example

Much simpler YAML

Simpler YAML

bundle: kubernetes
applications:
 seldon-core: { charm: seldon-core-15, scale: 1 }
 argo-controller: { charm: argo-controller-14, scale: 1 }
 pipelines-persistence: { charm: pipelines-persistence-13, scale: 1 }
 pipelines-scheduledworkflow: { charm: pipelines-scheduledworkflow-15, scale: 1 }
 tf-job-operator: { charm: tf-job-operator-13, scale: 1 }
 minio: { charm: minio-15, scale: 1 }
 pytorch-operator: { charm: pytorch-operator-14, scale: 1 }
 pipelines-db: { charm: "cs:~charmed-osm/mariadb-k8s-34", scale: 1 }
 pipelines-api: { charm: pipelines-api-14, scale: 1 }
relations:
 - [argo-controller, minio]
 - [pipelines-api, pipelines-db]
 - [pipelines-api, pipelines-persistence]
 - ["pipelines-api:minio", "minio:minio"]
series: ~
description: ~

OLM

K8s

argo-controller-operator-233s32
seldon-core-operator-342de23
minio-operator-2342fe3
...

argo-controller-34a643
seldon-core-b3ac435
minio-23ac35
...

Real time dynamic integration

Automated integration in production

Declarative integration

“Do one thing very well”

Composition and integration

“provide prometheus” “require prometheus”

Composition and integration

name: prometheus2

summary: Monitoring system and time...

...

provides:

 graf:

 interface: grafana-source

...

name: grafana

summary: Graph and Dashboard builder...

...

requires:

 grfn-src:

 interface: grafana-source

...

“relate prometheus and grafana”

Composition and integration

Small,
composable
operator

We model
integration
explicitly

Model

Complexity

Composition

Complexity

Multi cloud integration

The model

Model

Charms
Operator packages

Operator Lifecycle Manager

Model-driven operators

✓ RBAC on model permissions
✓ Capacity and scale
✓ Network attachments
✓ Storage classes
✓ Architecture & operations
✓ Integration
✓ Placement

How do operators communicate?

Juju is an Operator Lifecycle Manager (OLM)

“Relate those two apps”

Consistent UX and CLI for all operators

juju deploy prometheus grafana
juju config prometheus foo=322 bar=isolated
juju relate prometheus grafana
juju scale prometheus 3

juju deploy kubeflow-pipelines istio
juju config kubeflow-pipelines driver=cuda angio=done
juju relate istio kubeflow-pipelines
juju scale kubeflow-pipelines 3

 deploy
 config
 relate
 scale
 day 2

Consistent application operations

 deploy
 config
 relate
 scale
 day 2

 storage
 network
 permissions
 compute

Consistent application operations

Consistent business execution

Fine-grained workload control by operators

Traditional K8s operator in separate pod

Operator Pod

Workload Pod

Operator
container

Workload
container

○ On different machines
○ No IPC or local comms
○ No file sharing
○ No separate state per unit

Fine-grained control with sidecar placement

Operator Pod

Operator
container

Workload
container

○ Always co-located on host
○ Can use SHM or UNIX sockets
○ Can share files with workload
○ Operator scales too
○ Better control, debugging

Both are supported

Operator Pod

Workload Pod

Operator Pod

Operator
container

Workload
container

Operator
container

Workload
container

Golang and Python

OLM in Golang

○ Highly concurrent
○ Events and messaging
○ Multi model multi app
○ Performance critical
○ Highly available

Charms in Python

○ Simpler collaboration
○ Integration code only
○ Serialized event handling
○ Control plane for one app
○ Community-centric

The Juju OLM distributes events to operators

“Configure that app”
“Integrate those apps”

“Scale that app”

“Prometheus is waiting”
“Scale yourself to 3 units”

“Upgrade yourself”
“Integrate with Grafana”

Python operator framework
 is a clean event handling loop

class MyCharm(CharmBase):

 def __init__(self, *args):

 super().__init__(*args)

 self.framework.observe(self.on.config_changed, self)

 def on_config_changed(self, event):

 url = self.model.config[“url”]

 # ...

You can also charm traditional apps

Solve for both infrastructure and apps

On machines

The scripts work locally
to that machine

On Kubernetes

The scripts in one container
act on other containers

Model driven operations - Machine & Kubernetes

Universal operators

Bare metalVM / CloudKubernetes

Integration across generations

Bare metalVM / CloudKubernetes

Reusable, composable operators

● Easier to write operators
● Easier to deploy operators
● Easier to share operators
● Easier to integrate operators

https://charmhub.io/

https://charmhub.io/

Thank you. Questions?

