

Enabling high performance VNFs with EPA & SDN Assist

Mark Beierl (Canonical)

EPA (Enhanced Platform Awareness)

- Covers a set of techniques for getting more performance
- EPA features include:
 - NUMA node placement
 - CPU Pinning
 - Huge Pages
 - SR-IOV
- OSM supports these since release 0
 - Enabled via the NF descriptor

NUMA

Non-Uniform Memory Access

- Memory is attached to each CPU's integrated memory controller
- Memory attached to a memory controller of another CPU is considered remote
- Remote memory access must use the Interconnect to read remote memory

Preventing a process from moving to a different CPU is called CPU Pinning

Most NFVI/VIMs support **CPU Pinning** and **NUMA Topology Awareness** capabilities without any need for configuration.

CPU Pinning: being able to pin a VM to specific CPUs

NUMA Topology Awareness: making the VM aware of the physical CPU topology

64 GB RAM = 16,777,216 4k pages Mapping of pages to physical RAM addresses happens in the Translation Lookaside Buffer

- (TLB) TLB is subset of all virtual pages
- TLB is subset of all virtual pages
- Finding memory that is not in TLB is slow

Linux kernel maps memory in pages (4k)

- Recommendation: Huge Pages
 - Changes page size from 4k to something larger
 - Can result in memory waste

5

Huge Pages

Memory Huge Pages allows the VNFs to request RAM memory from a special pool where page sizes are bigger, enabling better performance.

Enabling/changing Huge Pages require a node reload, and the NFVI servers to allocate a new memory pool with bigger pages, this will not allow VMs set with normal pages to use this new pool, so it should be limited.

SR-IOV

Hypervisor must maintain map of which VM sent which packet so response goes to correct VM

- Single Root I/O Virtualization
 - Allows device to appear to be multiple separate physical PCIe devices
 - Physical Function (PF) the primary function of the device
 - Virtual Function (VF) associated with PF, shares physical resources of device
 - Bypasses map so lookup is not necessary

SR-IOV

SR-IOV allows VNFs to have direct access to a virtualized PCI of a NIC, thus giving it better throughput.

Enabling SR-IOV requires a node reload for reconfiguration of the IOMMU virtualization mode. It also requires physical interfaces to be dedicated to this feature.

Descriptor must be made aware of NUMA topology OSM does not know: Number of Numa Nodes

- Number of CPU cores
- Number of CPUs/threads per core
- All this must be known before launching a service

OSM supports EPA enablement in Descriptors

OSM does not change OpenStack server configuration

SR-IOV must already be enabled in the compute node

Huge pages must be enabled in the compute node

OSM and EPA

However

Ο

Ο

Ο

SDN Assist

SDN Controller

- Separates the network control functions from forwarding functions
- Creates overlays that exist on top of physical network
- Manages flow control of switches "under" the overlay

• OSM currently supports:

- Arista Cloudvision
- Floodlight OpenFlow
- Juniper Contrail
- OpenDaylight (ODL) OpenFlow
- ONOS (OpenFlow or VPLS)

Using Virtual Interfaces (VIRTIO)

Using Physical Interfaces (SR-IOV/PASSTHROUGH)

SR-IOV and Passthrough features expose the instance directly to the physical NIC, so who takes care of the end-to-end connectivity?

1. OSM orchestrates SR-IOV or Passthrough

 \rightarrow Proper assignment of I/O physical interfaces to the VM (PFs or VFs = Physical or Virtual Functions)

- 2. OSM SDN Assist gives the ability to create L2 connections between VFs
 - Interconnecting VMs
 - Attaching external traffic sources

SDN Assist

* Supported as of REL7.1.0 \rightarrow ONOS, Arista, Open Daylight and Floodlight

• Like EPA, OSM does not manage SDN Controller or OpenStack

- Compatible SDNC must be installed
- Must be reachable from OSM
- Some plugins need additional information
 - Port mapping files for PCI ports
- VIM account must have admin privileges
 - Needs get PCI information

EPA in our Network Service

In our example, we could have enabled SR-IOV for the Wiki, to provide the fastest response time for the internal HTTP and Load Balancer services, as well as huge pages for content cache.

Find us at: <u>osm.etsi.org</u> <u>osm.etsi.org/wikipub</u>

