
© ETSI

Writing Good Tests
Mark Beierl (Canonical)



© ETSI

What is Legacy Code?

● Spaghetti Code
● Poorly Structured
● Not documented, or misleading comments
● “Someone else’s code”
● Code without tests

○ With tests we can change quickly, and verify
○ Without, we don’t know if it’s better or worse

From Working Effectively With Legacy Code
Michael C. Feathers

2



© ETSI

What is a Unit Test?

● Different opinions:
○ Method level?
○ If clause level?
○ Success path / failure path?
○ Automated, or manual set up?
○ Special environment to run?

● If the meaning does not match intent, do we know what to do?

A new term: Micro Test

3



© ETSI

What is a Micro Test?

• Short, few lines of code
• Always automated
• Purpose built test application
• Test a single branch of logic
• Test code written to same standard as 

regular code
• Test code is in git too
• Serves as gateway to commit
• Very quick 

• milliseconds per test

4

• Precise feedback on errors
• Part of a collection
• Easy to invoke
• Grey box

• Can manipulate contents if needed
• Avoids use of collaborators through the 

use of mock or stub objects
• Involves creation of very few objects
• Does not require any external software

From They’re Called Microtests
http://anarchycreek.com/2009/05/20/theyre-called-microtests/



© ETSI

Writing Tests

• What do I test?
• Expected behaviour
• Logic paths
• External API
• Exceptions
• Impossible conditions

• What don’t I test?
• Things that are too simple to break?
• Getters / Setters

• When have I tested enough?
• When fear turns to boredom…

5



© ETSI

Tests as Documentation

• A good test demonstrates:
• Functionality
• Expected inputs / outputs
• Exception handling
• Interactions with other objects

• Tests can serve as a document about how to use the API
• Example of how to use the function under test
• What types of exceptions can happen

6



© ETSI

Idempotent and Independent

• Tests must:
• Be self-contained
• Be repeatable
• Have everything needed to cover all logic paths

• Tests must not:
• Cause changes in the environment
• Leave anything behind
• Depend on prior test execution
• Have any side effects
• Launch a rocket

7



© ETSI

But my Function Launches a Rocket!

How can we test a rocket without sending it into orbit?

MOCK IT

8



© ETSI

What is a Mock?

• Simulated objects that mimic the behavior of real objects in 
controlled ways

• Use a mock if the object
• Has non-deterministic results 

• (e.g. the current time or the current temperature)
• has states that are difficult to create or reproduce 

• (e.g. a network error)
• is slow 

• (e.g. a complete database, which would have to be initialized before the test)

9



© ETSI

What Can a Mock Do?

● It does only what it is told to do, nothing more
● Can return any value

○ mock.side_effect = “123”
● Can throw exceptions

○ Even “impossible ones”
○ mock.side_effect = DatabaseIndexCorruptedException()

● No logic path or exception handler should go without testing!

10



© ETSI

Proof?

● Already part of our pipeline
● Both

○ Pre-merge commits
○ Post-merge commits

11



© ETSI

Protect the Code

• Putting it all together:
• Lots of very fast micro tests
• Covering a predefined percentage of the code base
• … or Jenkins could the job

• A perfect companion to Gerrit
• Pre-review gate (the stage 2 job)
• Reviews can be rejected if

• A test is broken
• The percentage of code coverage drops

• Prevents “Legacy Code”

12



© ETSI

What Have We Learned?

• Code without tests is tomorrow’s legacy code
• Microtests = “Good Unit Tests”

• Fast, repeatable, Idempotent, Independent
• Mocks replace slow, dangerous or difficult collaborators
• There is no code that is too complex to test
• Jenkins knows how to read unit test and code coverage results
• Gerrit can prevent patches that violate the norms set by the 

project

13



© ETSI

Find us at:
osm.etsi.org

osm.etsi.org/wikipub


